ЭЛЕМЕНТЫ АКТИВНЫХ ФИЛЬТРОВ
СОДЕРЖАНИЕ.
СОДЕРЖАНИЕ. 2 ВВЕДЕНИЕ. 3 1. АКТИВНЫЕ ФИЛЬТРЫ. 6 1.1. ПЕРЕДАТОЧНЫЕ ФУНКЦИИ. 6 1.2. ЭЛЕМЕНТЫ АКТИВНЫХ ФИЛЬТРОВ. 6 1.3. ПРЕИМУЩЕСТВА АКТИВНЫХ ФИЛЬТРОВ. 8 1.4. НЕДОСТАТКИ АКТИВНЫХ ФИЛЬТРОВ. 9 1.5. ПОСТРОЕНИЕ ФИЛЬТРОВ. 9 2. ФИЛЬТРЫ НИЖНИХ ЧАСТОТ. 11 2.1. ФИЛЬТРЫ НИЖНИХ ЧАСТОТ. 11 2.2. ФИЛЬТРЫ БАТТЕРВОРТА. 12 2.3. ФИЛЬТРЫ НИЖНИХ ЧАСТОТ НА ИНУН. 13 2.4. РАСЧЕТ ФИЛЬТРА НИЖНИХ ЧАСТОТ НА ИНУН. 16 3. ФИЛЬТР ВЕРХНИХ ЧАСТОТ. 17 3.1. ОБЩИЙ СЛУЧАЙ. 17 3.2. ФИЛЬТРЫ ВЕРХНИХ ЧАСТОТ НА ИНУН. 18 3.3. РАСЧЕТ ФИЛЬТРА ВЕРХНИХ ЧАСТОТ НА ИНУН. 19 4. ПОЛОСОВЫЕ ФИЛЬТРЫ. 21 4.1. ОБЩИЙ СЛУЧАЙ. 21 5. РАСЧЕТНАЯ ЧАСТЬ. 23 5.1. РАСЧЕТ ФНЧ ЧЕТВЕРТОГО ПОРЯДКА. 23 5.2. РАСЧЕТ ФВЧ ЧЕТВЕРТОГО ПОРЯДКА. 24 5.3. ВЫБОР ЭЛЕМЕНТОВ. 26 5.4. АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ. 27 ЗАКЛЮЧЕНИЕ. 29 ПЕРЕЧЕНЬ ИСПЛЬЗУЕМЫХ ИСТОЧНИКОВ. 30
ВВЕДЕНИЕ. В курсовой работе предложено изучить, рассчитать, построить и проанализировать работу активного полосового фильтра со следующими характеристиками:
порядок фильтра – 4; граничные частоты – 100Гц, 18кГц; коэффициент передачи по напряжению – 1.
Изучение вопроса начнем с рассмотрения общих положений. Фильтрация — преобразование сигналов с целью изменения соотношения между их различными частотными составляющими. Фильтры обеспечивают выделение полезной информации из смеси информационного сигнала с помехой с требуемыми показателями. Основная задача выбора типа фильтра и его расчета заключается в получении таких параметров, которые обеспечивают максимальную вероятность обнаружения информационного сигнала на фоне помех. Частотно-избирательная цепь, выполняющая обработку смеси сигнала и шума некоторым наилучшим образом, называется оптимальным фильтром. Критерием оптимальности принято считать обеспечение максимума отношения сигнал-шум. Это требование приводит к выбору такой формы частотного коэффициента передачи фильтра, которая обеспечивает максимум отношения сигнал-шум на его выходе. В задачах линейной фильтрации предполагается, что наблюдаемый реальный процесс представляет собой аддитивную смесь сигнала и помехи. В большинстве случаев электрический фильтр представляет собой частотно-избирательное устройство. Следовательно, он пропускает сигналы определенных частот и задерживает или ослабляет сигналы других частот. Наиболее общими типами частотно-избирательных фильтров являются фильтры нижних частот (пропускают низкие частоты и задерживают высокие частоты), фильтры верхних частот (пропускают высокие частоты и задерживают низкие частоты), полосовые фильтры (пропускают полосу частот и задерживают те частоты, которые расположены выше и ниже этой полосы) и режекторные фильтры (задерживают полосу частот и пропускают частоты, расположенные выше и ниже этой полосы).
Рис. 1. Общее изображение электрического фильтра.
Более точно характеристику частотно-избирательного фильтра можно описать, рассмотрев его передаточную функцию
Величины U1 и U2 представляют собой соответственно входное и выходное напряжения, как показано на общем изображении фильтра на рис. 1.
Для установившейся частоты s=jw ( ) передаточную функцию можно переписать в виде
где ïH(jw)ç¾ модуль передаточной функции или амплитудно-частотная характеристика; j(w) ¾ фазо-частотная характеристика, а частота w(рад/с) связана с частотой f (Гц) соотношением w=2pf. Диапазоны или полосы частот, в которых сигналы проходят, называются полосами пропускания и в них значение амплитудно-частотной характеристики ïH(jw)ç относительно велико, а в идеальном случае постоянно. Диапазоны частот, в которых сигналы подавляются, образуют полосы задерживания и в них значение амплитудно-частотной характеристики относительно мало, а в идеальном случае равно нулю. В качестве примера на рис. 2 штриховой линией показана амплитудно-частотная характеристика идеального фильтра нижних частот с единственной полосой пропускания 0<w<wc и полосой задерживания w>wc . Частота wc между двумя этими полосами определяется как частота среза. На практике невозможно реализовать эту идеальную характеристику. Следовательно, основная проблема при конструировании фильтра заключается в приближении реализованной в лаборатории реальной характеристики с заданной степенью точности к идеальной. Вариант такой реальной характеристики показан сплошной линией на рис. 2. Рис. 2. Идеальная и реальная АЧХ фильтра нижних частот.
В практическом случае полосы пропускания и задерживания четко не разграничены и должны быть формально определены. Исходя из нашего определения, в качестве полосы пропускания выбирается диапазон частот, где значение амплитудно-частотной характеристики превышает некоторое заранее выбранное число, обозначенное A1 на рис. 2, а полосу задерживания образует диапазон частот, в котором амплитудно-частотная характеристика меньше определенного значения, например, A2 . Интервал частот, в котором амплитудно-частотная характеристика постоянно спадает, переходя от полосы пропускания к полосе задерживания, называется переходной областью. Приведенный на рис. 2 пример имеет полосу пропускания 0<w<wc, полосу задерживания w>w1 и переходную область wc<w<w1. Значение АЧХ можно также выразить в децибелах (дБ) следующим образом
и в этом случае a характеризует затухание. Например, предположим, что на рис. 2 выбрано A=1, которому соответствует a=0. Тогда если то затухание на частоте wc a1=-20´lg(1/20,5)=10´lg2=3 дБ. В основном пропускание в полосе пропускания никогда не превышает 3 дБ. Таким образом, из приведенного примера следует, что значение АЧХ в полосе пропускания составляет по крайней мере 1/20,5=0,707 или 70,7% ее максимального значения. В этом случае можно также сказать, что в полосе пропускания амплитудно-частотная характеристика на 3 дБ ниже или меньше максимального значения. Для частотно-избирательных фильтров наиболее важной является амплитудно-частотная характеристика, поскольку ее значение на некоторой частоте определяет прохождение сигнала этой частоты или его подавление. АКТИВНЫЕ ФИЛЬТРЫ.
ПЕРЕДАТОЧНЫЕ ФУНКЦИИ. Ранее было установлено, что невозможно создать идеальные фильтры, но с помощью реализуемых фильтров (которые реализуются на основе реальных схемных элементов) можно получить приближения к идеальным. Передаточная функция реализуемого фильтра представляет собой отношение полиномов, которое для наших целей запишем в виде , (4)
Коэффициенты a и b —вещественныепостоянные величины, а
Степень полинома знаменателя n определяет порядок фильтра. Будет показано, что реальные АЧХ лучше (более близки к идеальным) для фильтров более высокого порядка. Однако повышение порядка связано с усложнением схем и более высокой стоимостью. Таким образом, один из аспектов разработки фильтров связан с получением реализуемой характеристики, аппроксимирующей с некоторой заданной степенью точности идеальную характеристику при наименьших затратах. Если в (4) все коэффициенты a равны нулю, за исключением а0 , то передаточная функция представляет собой отношение постоянного числа к полиному. В этом случае фильтр является всеполюсным или полиномиальным, поскольку его передаточная функция обладает тем свойством, что все ее полюсы конечны, а конечных нулей не содержит. (Нуль определяется значением переменной s, для которой передаточная функция равна нулю, а полюс — это значение переменной s, для которой передаточная функция имеет бесконечное значение.)
ЭЛЕМЕНТЫ АКТИВНЫХ ФИЛЬТРОВ. Как только получена подходящая передаточная функция, разрабатывают схему фильтра, реализующую данную передаточную функцию. При этом разработка выливается в проектирование активных и пассивных фильтров. Пассивные фильтры представляют собой устройства, которые создаются на основе резисторов, конденсаторов и катушек индуктивности, а именно из пассивных схемных элементов. Эти фильтры пригодны для работы в определенных диапазонах частот, но не подходят для низких частот, например, ниже 0,5 мГц. Это происходит вследствие того, что на низких частотах параметры требуемых катушек индуктивности становятся неудовлетворительными из-за их больших размеров и значительного отклонения рабочих характеристик от идеальных и, кроме того, в отличие от резисторов и конденсаторов, катушки индуктивности плохо приспособлены для интегрального исполнения. Таким образом, для применения фильтров в диапазоне низких частот из схем желательно исключить катушки индуктивности. Это достигается разработкой активных фильтров на основе резисторов, конденсаторов и одного или нескольких активных приборов, таких как транзисторы, зависимые источники и т. д. Активные фильтры построены из сопротивлений, конденсаторов и усилителей (обычно операционных) и предназначены для того, чтобы из всех подаваемых на их вход сигналов пропускать на выход сигналы лишь некоторых заранее заданных частот. Эти обладающие частотной избирательностью схемы используются для усиления или ослабления определенных частот в звуковой аппаратуре, в генераторах электромузыкальных инструментов, в сейсмических приборах, в линиях связи, а также в исследовательской практике для изучения частотного состава самых разнообразных сигналов, таких, например, как биотоки мозга или механические вибрации. Активные фильтры находят применение почти в любой области электроники и потому заслуживают нашего внимания [2]. Одним из наиболее часто применяемых активных приборов, который в основном и будет использоваться, является интегральная схема (ИС) операционного усилителя или ОУ условное изображение которого приведено на рис.3.
Рис. 3. Операционный усилитель.
Операционный усилитель представляет собой многовходовый прибор, но для простоты показаны только три его вывода: инвертирующий входной (1), неинвертирующий входной (2) и выходной (3). В идеальном случае ОУ обладает бесконечным входным и нулевым выходным сопротивлениями и бесконечным коэффициентом усиления. Вследствие этого можно, при исследованиях рассматривать только напряжение между входными выводами, а также считать, что ток во входных выводах равен нулю. Реальные ОУ по своим характеристикам приближаются к идеальным наиболее близко только для ограниченного диапазона частот, который зависит от типа ОУ. Непоказанные на рис. 3 выводы — это обычно выводы подключения источника питания; выводы подключения цепей коррекции, требуемой для ОУ, например типа 709; и выводы балансировки нуля, необходимые для ОУ, типа 741. Эти дополнительные выводы используются в соответствии с рекомендациями, предоставляемыми фирмой-изготовителем. В основном ОУ с внешними цепями коррекции имеют лучшие результаты на более высоких частотах по сравнению с ОУ с внутренней коррекцией, которые не имеют выводов для подключения цепей коррекции. При реализации активного фильтра разработчик должен применять те же типы ОУ, которые отвечают предъявленным требованиям по коэффициентам усиления и частотным диапазонам. Например, коэффициент усиления ОУ с разомкнутой обратной связью должен по крайней мере в 50 раз превышать коэффициент усиления фильтра. В некритических конструкциях фильтров наиболее часто используются дешевые угольные композиционные резисторы. Для фильтров четвертого и более низкого порядка достаточно применять угольные композиционные резисторы с 5%-ными допусками, в частности, если предполагается использовать фильтр при комнатной температуре. Для фильтров с высокими рабочими характеристиками необходимо применять высококачественные типы резисторов. Чем выше порядок, тем меньше должны быть допуски. Фильтры с порядком выше четвертого необходимо реализовывать на резисторах с 2%-ным или меньшими допусками. Что касается конденсаторов, то наиболее подходящим типом является майларовый конденсатор, который можно успешно применять в большинстве конструкций фильтров. Конденсаторы на основе полистирола и тефлона лучше, но применяются в высококачественных фильтрах. Обычные экономичные дисковые керамические конденсаторы должны использоваться исключительно в наименее критических условиях.
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему стероиды повышают давление?: Основных причин три... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1961)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |