Мегаобучалка Главная | О нас | Обратная связь  


Технические средства феррозондового контроля изделий




Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Реферат

Курсовая работа содержит 26 страницы, 32 рисунков, 3 таблицы,

Боковая рама, магнитные волны, дефектоскоп, феррозондовый контроль, дефект.

Цель работы ? ознакомление с технологией проведения феррозондового контроля и составлением технологических карт.

Содержание

Реферат

Задание

Введение

1. Физика процесса

1.1 Технические средства феррозондового контроля изделий

1.2 Феррозондовые дефектоскопы

1.3 Феррозондовые преобразователи

2. Общие положения

3. Средства контроля

4. Подготовка к проведению контроля

5. Подготовка дефектоскопа

6. Подготовка деталей

7. Проведение контроля

8. Контроль деталей тележек грузовых вагонов

Заключение

Список используемой литературы

Задание

Задан объект контроля: боковая рама.

Зона контроля: узлы буксового проема боковой рамы (см. рис.2).

Рисунок 1- Боковая рама тележки 18-100

Рисунок 2 - Контроль буксового проема

Материал: Боковые рамы тележек 18-100 отлиты из низколегированной стали, имеющей предел прочности не менее 500 МПа, предел текучести не менее 300 МПа, относительное удлинение не менее 18%, поперечное сужение не менее 25%, ударную вязкость при - f - 20" С не менее 0,5 МДж/м2, при -- 60°С не менее 0,25МДж/м2. Уральский вагоностроительный завод, например, отливает эти части из стали марки 20ГФЛ.



Введение

Магнитный вид неразрушающего контроля основан на анализе взаимодействия магнитного поля и объекта контроля (ОК). применим лишь к деталям из металлов и сплавов, способных к намагничиванию. Основные задачи магнитного неразрушающего контроля (НК): контроль сплошности - дефектоскопия, измерение размеров - толщинометрия, контроль физико-механических свойств - структуроскопия. В отличие от двух последних на железнодорожном транспорте актуальна магнитная дефектоскопия. С ее помощью выявляют поверхностные и подповерхностные дефекты на свободных или открытых для доступа частях деталей.

На железнодорожном транспорте магнитному контролю подвергают следующие объекты подвижного состава: детали ударно-тягового и тормозного оборудования, рамы тележек различных моделей в сборе и по элементам, оси колесных пар вагонов и локомотивов всех типов в сборе, ободы, гребни и спицы локомотивных колес, свободные кольца буксовых подшипников, а также внутренние кольца, напрессованные на шейки оси, венцы зубчатых колес и шестерен тягового редуктора, валы генераторов, тяговых двигателей и шестерен в сборе, упорные кольца, стопорные планки, пружины, шкворни, болты и др. такая широкая номенклатура контролируемых объектов предполагает достаточно большое разнообразие методов, средств и технологических приемов магнитного контроля. При этом физическая сущность магнитной дефектоскопии для всех объектов является единой.

Физика процесса

Феррозондовый метод контроля основан на обнаружении феррозондовым преобразователем (ФП) магнитных полей рассеяния дефектов в предварительно намагниченных деталях и предназначен для выявления подповерхностных дефектов типа нарушений сплошности: волосовин, плен, трещин, ужимов, закатов, раковин и др. Феррозондовый преобразователь реагирует на резкое пространственное изменение напряженности магнитного поля над дефектами и преобразует градиент напряженности поля в электрический сигнал.

Вначале феррозондовые приборы использовались при аэромагнитных съемках с целью обнаружения магнитных аномалий, месторождений нефти, газа, редких металлов, изучения геологического строения океанического дна и прогнозирования нефтегазоносных площадей. В период революционного перехода в электронной технике от вакуумных элементов к полупроводниковым феррозондовые магнитометры нашли широкое применение при исследовании космоса, обнаружении и изучении магнитных полей Луны, Марса, Венеры и других планет. Сегодня феррозондовые приборы широко используются в дефектоскопии при обнаружении дефектов в широком спектре изделий машиностроения, транспорта. Большой вклад в теорию и практику разработки феррозондовых приборов для контроля деталей железнодорожного подвижного состава внес коллектив ОАО « Микроакустика» г. Екатеринбург.

Выбор феррозондовых преобразователей в качестве индикаторов магнитного поля рассеяния над дефектами в намагниченной детали обусловлен рядом преимуществ: малой потребляемой мощностью, незначительными габаритами, высокой надежностью работы, высоким КПД и избирательностью к локальным магнитным полям рассеяния.

Чувствительность феррозондового контроля определяется совокупностью физических факторов (магнитными свойствами материала контролируемого изделия, типом дефектов и их ориентацией, шероховатостью контролируемой поверхности, способом контроля и намагничивания деталей, чувствительностью ФП и электронной аппаратуры, способом обработки сигнала ФП).

ГОСТ Р21104-02 устанавливает одиннадцать условных уровней чувствительности.

Условные уровни чувствительности

Чувствительность контролируют на стандартных настроечных образцах, имеющих естественные или искусственные дефекты.

Феррозондовому контролю подвергаются боковые рамы и надрессорные балки тележек грузовых вагонов, балансиры и соединительные балки тележек, рамы тележек ЦМВ, КВЗ И2, КВЗ-ЦНИИ, корпуса автосцепок, тяговые хомуты поглощающих аппаратов и др.

Минимальная длина выявляемого дефекта должна быть равна 2мм.

При феррозондовом методе контроля в зависимости от магнитных свойств материала, размеров и геометрии контролируемых деталей реализуются два способа контроля: способ приложенного поля (СПП), заключающийся в намагничивании деталей и регистрации, магнитных полей рассеяния дефектов при включенном (установленном на деталь) намагничивающем устройстве НУ; способ остаточной намагниченности (СОН), заключающийся в намагничивании изделий и регистрации магнитных полей рассеяния после снятия или выключения намагничивающих устройств (в остаточном магнитном поле).

Контроль СПП рекомендуется применять для изделий из материалов с коэрцитивной силой Нс < 1280 А/м и остаточной магнитной индукцией Вг < 0,53 Тл. СОН следует применять для контроля изделий из материалов с высокими значениями коэрцитивной силы Нс > 1280 А/м я Вг > 0,53 Тл.

Следует учитывать ложные срабатывания индикаторов дефектоскопов, не связанные с дефектами (структурная неоднородность материалов, магнитные пятна, шероховатость контролируемой поверхности, неоднородность намагничивающего поля), именуемыми помехами или фоном. Этот недостаток устранен при использовании дефектоскопов с автоматической (зависящей от фона) настройкой порога чувствительности.

Технические средства феррозондового контроля изделий

К средствам феррозондового контроля относятся: дефектоскопные феррозондовые установки, включающие в себя два дефектоскопа- градиентометра или магнитоизмерительных комбинированных прибора, намагничивающие устройства, стандартные образцы предприятий (СОГГ); дополнительные устройства, в состав которых входят измерители напряженности магнитного поля, зарядная станция, компьютер, преобразователь интерфейса.




Читайте также:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (926)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7