Первичные измерительные преобразователи
Основными элементами большинства применяемых средств измерений являются первичные измерительные преобразователи, назначение которых - преобразование измеряемой физической величины (входная величина) в сигнал измерительной информации (выходная величина), как правило, электрический, удобный для дальнейшей обработки. Первичные преобразователи подразделяются на параметрические и генераторные. В параметрических преобразователях выходная величина представляет собой изменение какого-либо параметра электрической цепи {сопротивление, индуктивность, емкость и т.д.), в генераторных выходная величина - ЭДС, электрический ток или заряд, возникающие вследствие энергии измеряемой величины. Существует большой класс измерительных преобразователей, у которых входными величинами являются давление, сила или крутящий момент. Как правило, в этих преобразователях входная величина воздействует на упругий элемент и вызывает его деформацию, которая затем преобразуется или в сигнал, воспринимаемый наблюдателями (механические показывающие приборы), или в электрический сигнал. В значительной степени инерционные свойства преобразователя определяются частотой собственных колебаний упругого элемента: чем она выше, тем менее инерционным является преобразователь. Максимальное значение этих частот при использовании конструкционных сплавов составляет 50...100 кГц. Для изготовления упругих элементов особо точных преобразователей применяются кристаллические материалы (кварц, сапфир, кремний). Резистивные преобразователи - это параметрические преобразователи, выходной величиной которых является изменение электрического сопротивления, которое может вызываться воздействием разнообразных по физической природе величин - механических, тепловых, световых, магнитных и др. Потенциометрический преобразователь представляет собой реостат, движок которого перемешается под воздействием измеряемой величины (входная величина). Выходной величиной является сопротивление. Потенциометрические преобразователи применяются для измерения положения регулирующих органов (линейных и угловых), в уровнемерах, в датчиках (например, давления) для измерения деформации упругого чувствительного элемента. Достоинство потенциометрических преобразователей - большой выходной сигнал, стабильность метрологических характеристик, высокая точность, незначительная температурная погрешность. Основной недостаток - узкий частотный диапазон (несколько десятков герц). Работа тензорезисторов основана на изменении сопротивления проводников и полупроводников при их механической деформации (тензоэффект). Проволочный (или фольговый) тензорезистор представляет собой зигзагообразную изогнутую тонкую проволоку диаметром 0,02...0,05 мм или ленту из фольги толщиной 4...12 мкм (решетка), которая наклеивается на подложку из электроизоляционного материала. К концам решетки присоединяются выводные медные проводники. Преобразователи, будучи приклеенными к детали, воспринимают деформацию ее поверхностного слоя. При измерениях деформаций и напряжений в деталях и конструкциях, как правило, отсутствует возможность градуировки измерительных каналов и погрешность измерений составляет 2...10 %. В случае применения тензорезисторов в первичных измерительных преобразователях погрешность может быть снижена до 0.5...1 % путем градуировки. Основной недостаток тензорезисторов данного типа - малый выходной сигнал. Для измерений малых деформаций упругих чувствительных элементов измерительных преобразователей используются полупроводниковые тензорезисторы, выращенные непосредственно на упругом элементе, выполненном из кремния или сапфира. При измерениях динамических деформаций с частотой до 5 кГц должны применяться проволочные или фольговые тензорезисторы с базой не более 10 мм, причем максимальная деформация для них не должна превышать 0,1 % (0,02 % для полупроводниковых). Действие пьезоэлектрических преобразователей основано на возникновении электрических зарядов при деформации кристалла (прямой пьезоэффект). Пьезоэлектрические преобразователи обеспечивают возможность измерения быстропеременных величин (собственная частота преобразователей достигает 200 кГц), отличаются высокой надежностью и имеют малые габаритные размеры и массу. Основной недостаток - трудность при измерении медленно изменяющихся величин и при проведении статической градуировки из-за утечек электричества с поверхности кристалла. Электростатический преобразователь схематично можно представить в виде двух электродов (пластин) площадью F, параллельно расположенных на расстоянии d в среде с диэлектрической проницаемостью е. Обычно эти преобразователи устроены таким образом, что их выходной величиной является изменение емкости (в этом случае они называются емкостными), а входными величинами могут быть механические перемещения, изменяющие зазор d или площадь F, или изменение диэлектрической проницаемости среды e вследствие изменения ее температуры, химического состава и т.п. Кроме емкости, в качестве выходной величины электростатических преобразователей используется ЭДС. генерируемая при взаимном перемещении электродов, находящихся в электрическим поле (генераторный режим). Например, в генераторном режиме работают конденсаторные микрофоны, преобразующие энергию акустических колебаний в электрическую. Достоинством электростатических преобразователей является отсутствие шумов и самонагрева. Однако с целью защиты от наводок соединительные линии и сами преобразователи должны тщательно экранироваться. У индуктивных преобразователей выходной величиной является изменение индуктивности, а входными величинами могут быть перемещения отдельных частей преобразователя, приводящие к изменению сопротивления магнитной цепи, взаимоиндукции между контурами и т.д. Достоинствами преобразователей являются: линейность характеристики, малая зависимость выходного сигнала от внешних воздействий, ударов и вибраций; высокая чувствительность. Недостатки - малый выходной сигнал и необходимость в питающем напряжении повышенной частоты. Принцип действия вибрационно-частотных преобразователей основан на изменении частоты собственных колебаний струны или тонкой перемычки при изменении ее натяжения. Входной величиной преобразователя является механическое усилие (или величины, преобразуемые в усилие. - давление, крутящий момент и др.). которое воспринимается упругим элементом, связанным с перемычкой. Применение вибрационно-частотных преобразователей возможно при измерении постоянных или медленно изменяющихся во времени величин (частота не более 100...150 Гц). Они отличаются высокой точностью, а частотный сигнал - повышенной помехоустойчивостью. В оптоэлектрических преобразователях используются закономерности распространения и взаимодействия с веществом электромагнитных волн оптического диапазона. Основным элементом преобразователей являются приемники излучения. Простейшие из них - тепловые преобразователи - предназначены для преобразования всей падающей на них энергии излучения в температуру (интегральный преобразователь). В качестве приемников излучения используются также различные фотоэлектрические преобразователи, в которых используется явление фотоэффекта. Фотоэлектрические преобразователи являются селективными, т.е. они обладают высокой чувствительностью в сравнительно узком диапазоне длин волн. Например, внешний фотоэффект (испускание электронов под действием света) используется в вакуумных и газонаполненных фотоэлементах и фотоумножителях. Вакуумный фотоэлемент представляет собой стеклянный баллон, на внутренней поверхности которого нанесен слой фоточувствительного материала, образующий катод. Анод выполняется в виде кольца или сетки из металлической проволоки. При освещении катода возникает ток фотоэмиссии. Выходные токи этих элементов не превышают нескольких микроампер. В газонаполненных фотоэлементах (для заполнения применяются инертные газы Ne, Аr, Кr, Хе) выходной ток увеличивается в 5...7 раз из-за ионизации газа фотоэлектронами. В фотоумножителях усиление первичного фототока происходит вследствие вторичной электронной эмиссии - "выбивания" электронов из вторичных катодов (эмиттеров), установленных между катодом и анодом. Общий коэффициент усиления в многокаскадных фотоумножителях может достигать сотен тысяч, а выходной ток - 1 мА. Фотоумножители и вакуумные, элементы могут использоваться при измерениях быстро изменяющихся величин, так как явление фотоэмиссии практически безынерционно.
Измерение давлений
Для измерения полного или статического давления в поток помешают специальные приемники с приемными отверстиями, которые трубками небольшого диаметра (пневмомагистралями) соединяются с соответствующими первичными преобразователями или измерительными приборами. Простейшим приемником полного давления является цилиндрическая трубка с перпендикулярно срезанным торцом, изогнутая под прямым углом и ориентированная навстречу потоку. Для уменьшения чувствительности приемника к направлению потока (например, при измерениях в потоках с небольшой закруткой) применяются специальные конструкции приемников. Например, приемники полного давления с протоком (рис. 3.3) характеризуются погрешностью измерения не более 1 % при углах скоса до 45° при числе М<0,8. При измерении статических давлений вблизи стенок каналов приемные отверстия диаметром 0,5...1 мм выполняются непосредственно в стенках (дренажные отверстия). В месте дренажа не должно быть неровностей, а кромки отверстий не должны иметь заусенцев. Этот вид измерений весьма распространен при исследовании течений в трубах и каналах в камерах сгорания, диффузорах и соплах.
Рис. 3.3. Схема приемника полного давления: 1 - приемная трубка; 2 - направляющая втулка
Рис. 3.4. Схема приемника статического давления: а - клиновидный; б - дисковый; в - Г-образный для измерений при М£1,5
Для измерений статических давлений в потоке применяются клиновидные и дисковые приемники, а также приемники в виде трубок Г-образной формы (рис. 3.4) с приемными отверстиями, расположенными на боковой поверхности. Указанные приемники хорошо работают при дозвуковых и небольших сверхзвуковых скоростях. Для исследования распределения давлений в поперечных сечениях каналов получили распространение гребенки полного и статического давлений, содержащие несколько приемников, или комбинированные гребенки, имеющие приемник как полного, так и статического давлений. При измерениях в потоках со сложной структурой течения (камеры сгорания, межлопаточные каналы турбомашин) применяются ориентируемые и неориентируемые приемники давления, позволяющие определить значения полного и статического давлений и направление вектора скорости. Первые из них предназначены для измерений в двумерных потоках, и их конструкция позволяет путем поворота устанавливать приемник в определенном положении относительно вектора местной скорости потока. Неориентируемые приемники снабжены несколькими приемными отверстиями (5...7), которые выполнены в стенках цилиндра или сферы небольшого диаметра (3...10 мм) или располагаются в концах срезанных под определенными углами трубок (диаметр 0,5...2 мм), объединенных в единый конструктивный узел (рис. 3.5). При обтекании приемника потоком вокруг него формируется определенное распределение давлений. Используя измеренные с помощью приемных отверстий значения давлений и результаты предварительной градуировки приемника в аэродинамической трубе, можно определить значения полного и статического давлений и местное направление скорости потока. При сверхзвуковых скоростях течений перед приемниками давлений возникают скачки уплотнения, и это необходимо учитывать при обработке результатов измерений. Например, по измеренным значениям статического давления в потоке р и полного за прямым скачком уплотнения р*' можно определить с помощью формулы Релея число М, а затем и значение полного давления в потоке: p*=p/p(M). При испытаниях двигателей и их элементов для измерения давлений применяются различные приборы (стрелочные деформационные, жидкостные, групповые регистрирующие манометры), позволяющие оператору контролировать режимы работы экспериментальных объектов. В информационно-измерительных системах используются разнообразные первичные преобразователи. Как правило, давление, точнее разность давлений (например, между измеряемым и атмосферным, между полным и статическим и т.д.), воздействует на упругий чувствительный элемент (мембрану), деформация которого преобразуется в электрический сигнал. Наиболее часто для этого применяются индуктивные и тензочувствительные преобразователи при измерении постоянных и медленно изменяющихся давлений и пьезокристаллические и индуктивные преобразователи при измерении переменных давлений.
Рис. 3.5. Схема пятиканального приемника давлений: Сx, Сy, Сz - составляющие вектора скорости; рi - измеряемые значения давления
В качестве примера на рис. 3.6 представлена схема преобразователя «Сапфир-22ДД». Преобразователи этого типа выпускаются в нескольких модификациях, предназначенных для измерения избыточного давления, разности давлений, вакуума, абсолютного давления, избыточного давления и вакуума в различных диапазонах. Упругий чувствительный элемент представляет собой металлическую мембрану 2, к которой сверху припаяна сапфировая мембрана с напыленными кремниевыми тензорезисторами. Измеряемая разность давлений воздействует на блок, состоящий из двух диафрагм 5. При смещении их центра усилие с помощью тяги 4 передается на рычаг 3, что приводит к деформации мембраны 2 с тензорезисторами. Электрический сигнал от тензорезисторов поступает в электронный блок 4, где преобразуется в унифицированный сигнал - постоянный ток 0...5 или 0...20 мА. Электрическое питание преобразователя осуществляется от источника постоянного тока напряжением 36 В.
При измерениях переменных (например, пульсирующих) давлений целесообразно максимальное приближение первичного преобразователя к месту измерения, так как наличие пневмомагистрали вносит существенные изменения в амплитудно-частотную характеристику системы измерений. Предельным в этом смысле является бездренажный метод, при котором миниатюрные преобразователи давления крепятся заподлицо с поверхностью, обтекаемой потоком (стенкой канала, лопаткой компрессора и т.д.). Известны преобразователи, имеющие высоту 1,6 мм и диаметр мембраны 5 мм. Используются также системы с приемниками давления и волноводами (l~100 мм) (метод вынесенных приемников давления), в которых для улучшения динамических характеристик используются корректирующие акустические и электрические звенья. При большом числе точек измерения в измерительных системах могут применяться специальные быстродействующие пневмокоммутаторы, которые обеспечивают поочередное подключение к одному преобразователю нескольких десятков точек измерения. Для обеспечения высокой точности необходимо в рабочих условиях периодически контролировать средства измерения давления с помощью автоматических задатчиков.
Измерение температур
Для измерения температур применяются разнообразные средства измерений. Термоэлектрический термометр (термопара) представляет собой два проводника из различных материалов, соединенные (сваренные или спаянные) между собой концами (спаи). Если температуры спаев будут различны, то в цепи потечет ток под действием термоэлектродвижущей силы, значение которой зависит от материала проводников и от температур спаев. При измерениях, как правило, один из спаев термостатируется (для этого применяется тающий лед). Тогда ЭДС термопары будет однозначно связана с температурой «горячего» спая. В термоэлектрический контур можно включить разнородные проводники. При этом результирующая ЭДС не изменится, если все места соединений будут находиться при одинаковой температуре. На этом свойстве основано применение так называемых удлинительных проводов (рис. 3.7), которые присоединяются к термоэлектродам ограниченной длины, и таким образом достигается экономия дорогостоящих материалов. При этом необходимо обеспечить равенство температур в местах присоединения удлинительных проводов (Тс) и термоэлектрическую идентичность их основной термопаре в диапазоне возможного изменения температур Тс и Т0 (обычно не более 0...200°С). При практическом использовании термопар возможны случаи, когда температура Т0 отлична от 0°С. Тогда для учета этого обстоятельства ЭДС термопары следует определить как E=Еизм+DE(T0) и по градуировочной зависимости найти значение температуры. Здесь Еизм - измеренное значение ЭДС; DE(T0) – значение ЭДС, соответствующее величине T0 и определенное по градуировочной завиcимости. Градуировочные зависимости для термопар получают при температуре «холодных» спаев Т0, равной 0°С. Эти зависимости несколько отличаются от линейных. В качестве примера на рис. 3.8 приведена градуировочная зависимость для термопары платинородий-платина. Некоторые характеристики наиболее распространенных термопар даны в табл. 3.1. На практике наиболее распространены термопары с диаметром электродов 0,2...0,5 мм. Электроизоляция электродов достигается путем обмотки их асбестовой или кремнеземной нитью последующей пропиткой термостойким лаком, помещением термоэлектродов в керамические трубки или нанизыванием на них кусочков этих трубок («бусы»). Получили распространение термопары кабельного типа, представляющие собой два термоэлектрода, помещенные в тонкостенную оболочку, изготовленную из жаропрочной стали. Для изоляции термоэлектродов внутренняя полость оболочки набивается порошком MgO или Al2О3. Наружный диаметр оболочки - 0,5...6 мм.
Таблица 3.1
Для правильного измерения температуры конструктивных элементов термопары должны заделываться таким образом, чтобы горячий спай и термоэлектроды вблизи него не выступали над поверхностью и чтобы условия теплоотдачи от термометрируемой поверхности не нарушались из-за установки термопары. Для уменьшения погрешности измерений вследствие оттока (или притока) тепла от горячего спая по термоэлектродам за счет теплопроводности термоэлектроды на некотором расстоянии вблизи спая (7...10 мм) должны прокладываться примерно по изотермам. Схема заделки термопары, удовлетворяющей указанным требованиям, приведена на рис. 3.9. В детали выполнена канавка глубиной 0,7 мм, в которую укладываются спай и прилегающие к нему термоэлектроды; спай приваривается к поверхности контактной сваркой; канавка закрывается фольгой толщиной 0,2...0,3 мм. Вывод термоэлектродов из внутренних полостей двигателя или его узлов осуществляется через штуцера. При этом необходимо следить за тем, чтобы термоэлектроды не слишком сильно нарушали структуру течения и не повреждалась их изоляция из-за трения друг о друга и об острые кромки конструкции. При измерении температур вращающихся элементов показания термопар выводятся с помощью щеточных или ртутных токосъемников. Разрабатываются также бесконтактные токосъемники. Схемы термопар, применяемых для измерения температуры потока газа, приведены на рис. 3.10. Горячий спай 1 представляет собой сферу диаметром d0 (термоэлектроды могут также свариваться встык); термоэлектроды 2 вблизи спая закрепляются в изолирующей двухканальной керамической трубке 3, а затем выводятся из корпуса 4. На рисунке корпус 4 показан водоохлаждаемым (охлаждение необходимо при измерениях температур, превышающих 1300...1500 К), подвод и отвод охлаждающей воды осуществляются через штуцера 5. При высоких значениях температуры газа возникают методические погрешности, обусловленные отводом тепла от спая вследствие теплопроводности по термоэлектродам к корпусу термопары и излучением в окружающую среду. Потери тепла из-за теплопроводности практически полностью можно устранить, обеспечив вылет изолирующей трубки, равный 3...5 ее диаметрам. Для уменьшения отвода тепла излучением применяется экранирование термопар (рис. 3.10, б, в). Этим обеспечивается также защита спая от повреждений, а торможение потока внутри экрана способствует повышению коэффициента восстановления температуры при измерениях в высокоскоростных потоках. Разработан также метод определения температуры газа по показаниям двух термопар, имеющих термоэлектроды различного Рис. 3.9. Схема заделки термопары при измерении температуры элементов камер сгорания
Рис. 3.10. Схемы термопар для измерения температуры газа: а - термопара с открытым спаем: б, в - экранированные термопары; г - двухспайная термопара; 1 - спай: 2 – термоэлектроды; 3 - керамическая трубка; 4 - корпус; 5 - штуцера для подвода и отвода воды диаметра (рис. 3.10, г), позволяющий учесть отвод тепла излучением. От конструктивного выполнения зависит инерционность термопар. Так, постоянная времени изменяется от 1...2 с для термопар с открытым спаем, до 3...5 с для экранированных термопар. При исследовании полей температур (например, за турбиной, камерой сгорания и т.д.) применяются гребенки термопар, причем в ряде случаев они устанавливаются во вращающихся турелях, что позволяет достаточно подробно определять распределение температур во всем поперечном сечении. Действие термометра сопротивления основано на изменении сопротивления проводника при изменении температуры. В качестве электросопротивления применяется проволока диаметром 0,05... 0,1 мм, выполненная из меди (t=-50...+150°С), никеля (t=-50...200°С) или платины (t=-200...500°С). Проволока наматывается на каркас и помещается в чехол. Термометры сопротивления обладают высокой точностью и надежностью, однако они характеризуются большой инерционностью и не пригодны для измерения локальных температур. Термометры сопротивления применяются для измерений температуры воздуха на входе в двигатель, температур топлив, масел и т.д. В жидкостных термометрах используется свойство теплового расширения жидкости. В качестве рабочих жидкостей применяются ртуть (t=-30...+700°C), спирт (t=-100...+75°C) и др. Жидкостные термометры используются при измерениях температуры жидких и газообразных сред в лабораторных условиях, а также при градуировке других приборов. Оптические методы измерения температуры основаны на закономерностях теплового излучения нагретых тел. На практике могут быть реализованы три типа пирометров: яркостные пирометры, работа которых основана на изменении теплового излучения тела с температурой при некоторой фиксированной длине волн; цветовые пирометры, использующие изменение с температурой распределения энергии в пределах некоторого участка спектра излучения; радиационные пирометры, основанные на зависимости от температуры общего количества излучаемой телом энергии. В настоящее время при испытаниях двигателей для измерений температур элементов конструкции нашли применение яркостные пирометры, созданные на базе фотоэлектрических приемников лучистой энергии. В качестве примера схема установки пирометра при термометрировании лопаток турбины на работающем двигателе представлена на рис. 32.11. С помощью линзы 2 «поле зрения» первичного преобразователя ограничено небольшим (5...6 мм) участком. Пирометр «осматривает» кромку и часть спинки каждой лопатки. Защитное стекло 1, выполненное из сапфира, предохраняет линзу от загрязнения и перегрева. Сигнал по световоду 3 передается к фотодетектору. Благодаря малой инерционности пирометр позволяет контролировать температуру каждой лопатки. Для измерения температур конструктивных элементов двигателя могут применяться цветовые индикаторы температуры (термокраски или термолаки) - сложные вещества, которые при достижении определенной температуры (температура перехода) резко изменяют свой цвет из-за химического взаимодействия компонентов или происходящих в них фазовых переходов. Рис. 3.11. Схема установки пирометра на двигателе: (а) (1 - подвод обдувочного воздуха; 2 - первичный преобразователь) и схема первичного преобразователя (б) (1 - защитное стекло; 2 - линза; 3 - световод) Термокраски и термолаки, будучи нанесенными на твердую поверхность, после высыхания затвердевают и образуют тонкую пленку, которая способна изменять свой цвет при температуре перехода. Например, термокраска ТП-560 белого цвета при достижении t=560 °С становится бесцветной. С помощью термоиндикаторов можно обнаружить зоны перегрева в элементах двигателя, в том числе и в труднодоступных местах. Трудоемкость измерений невелика. Однако их применение ограничено, так как не всегда можно установить, на каком режиме была достигнута максимальная температура. Кроме того, окраска термоиндикатора зависит от времени воздействия температуры. Поэтому термоиндикаторы, как правило, не могут заменить других методов измерений (например, с помощью термопар), но позволяют получить дополнительную информацию о тепловом состоянии исследуемого объекта.
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (7079)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |