Преобразование энергетических характеристик детерминированных сигналов
Рассмотрим преобразования энергетических характеристик детерминированных сигналов длительности Т в линейных стационарных системах (каналах). Учитывая определение СПМ (спектральная плотность мощности), можно выразить связь между этими характеристиками на выходе и входе детерминированного линейного стационарного канала:
Средние мощности сигналов на входе и выходе системы определяются соотношениями ФК (функция корреляции) Bx(τ) сигнала x(t) и его СПМ Gx(f) связаны парой преобразований Фурье. Если ввести в рассмотрение ФК для ИХ системы (канала):
ПРЕОБРАЗОВАНИЕ СЛУЧАЙНЫХ СИГНАЛОВ В ДЕТЕРМИНИРОВАННЫХ ЛИНЕЙНЫХ КАНАЛАХ (связь м/у ИХ и передаточной характеристиками) Исследование преобразований случайных процессов при их прохождении через динамические системы (как с регулярными, так и со случайно меняющимися параметрами) связано с решением задач двух типов: определение корреляционной функции (спектральной плотности мощности) отклика Y(t) на выходе системы, заданной своими характеристиками, по данной корреляционной функции (или спектральной плотности мощности) входного воздействия X(t); определение многомерного распределения вероятностей отклика Y(t) на выходе системы по многомерному распределению входного воздействия X(t). Вторая из указанных задач является более общей. Из её решения, очевидно, может быть получено решение первой задачи. Однако в дальнейшем ограничимся рассмотрением только первой задачи и лишь укажем пути решения второй, более сложной задачи. Так, можно утверждать, что если полоса частот Fx, занимаемая входным случайным процессом X(t), много шире полосы пропускания ∆F данной линейной системы, то распределение выходного случайного процесса Y(t) имеет тенденцию приближаться к гауссовскому. Действительно, в стационарной детерминированной линейной системе с финитной т.е. ограниченной во времени пределами 0...τп ИХ g(t) отклик
Шаг дискретизации ∆τ можно выбрать равным интервалу корреляции входного процесса 1/Fx. Допустим, что входной процесс центрирован Используя правила нахождения законов распределения для функций от случайных величин (случайных процессов), можно в принципе находить и распределение выходного процесса любого порядка, если известно распределение входного процесса. Однако определение многомерных вероятностных характеристик отклика линейных систем оказывается весьма громоздким и сложным, несмотря на то, что для решения этой задачи разработан ряд специальных приёмов. Далее займемся определением функции корреляции выходного процесса. Для стационарных случайных процессов существует пара преобразований Фурье между ФК Bx(τ) и By(τ) процессов X(t) и Y(t) и их СПМ Gx(f), Gy(f). Поскольку для стационарной линейной системы и при случайных стационарных воздействиях справедливо соотношение (4.38), то ФК выходного стационарного процесса Y(t) Можно показать [15], что ФК отклика детерминированной параметрической системы на стационарные входные воздействия X(t) определяется формулой
т.е. в данном случае выходной процесс, вообще говоря, нестационарен.
Случайные линейные каналы связи и их характеристики, особенности проводных и радиоканалов, замирания сигналов. Флуктуационные, сосредоточенные и импульсные помехи в канале, их вероятностные характеристики.
Помимо рассмотренных детерминированных преобразований сигнала в отдельных звеньях канала (в частности, в линии связи или среде распространения волны) имеют место и случайные преобразования сигнала. В простейшем случае это преобразование сводится к суммированию сигнала с независимым от него случайным процессом, называемым аддитивной помехой или аддитивным шумом. В более сложных каналах к этому добавляются случайные изменения параметров канала, в результате которых даже в отсутствие аддитивных помех принимаемый сигнал не определяется однозначно передаваемым. Характерные преобразования сигнала в случайных линейных каналах (цепях). Случайный линейный канал. В самом общем виде линейную систему (или линейный канал) можно описать случайной ИХ G(t,τ), имеющей тот же смысл, что. и g(t,τ) в (4.7), но представляющей случайную функцию двух аргументов: t (момента наблюдения реакции) и τ (времени, прошедшего с момента подачи δ-импульса на вход цепи). Такова, например, ИХ любой линейной системы, параметры которой подвергаются воздействию случайных внешних влияний, например температуры, давления, влажности и т.д. Случайный линейный канал можно характеризовать также случайной передаточной функцией переменных w и t
Можно показать [15], что функция корреляции процесса Y(t) на выходе случайного канала с характеристикой (4.41) при подаче на вход стационарного процесса X(t) определяется выражением
где Остановимся подробнее на моделях, с которыми чаще всего приходится встречаться. Обобщая модель (4.25) для случайного входного воздействия X(t), получаем Y(t)=γX(t-τ), где параметры τ и (или) γ флуктуируют. Обычно такие флуктуации в проводных линиях связи вызываются изменениями внешних условий и происходят чрезвычайно медленно (это значит, что за время длительности отсчёта ого интервала ∆ = 1/2F, где F — ширина спектра сигнала, параметры канала не успевают заметно изменяться) и в очень небольших относительных пределах. В радиоканалах при многолучевом распространении волн, в гидроакустических каналах и других флуктуации выражены более заметно. Если входной сигнал узкополосный, его удобно представить в квазигармонической форме: X(t) =A(t)cos[wot+Ф(t)], где A(t) и Ф(t) — медленно меняющиеся функции. Поэтому при достаточно малой задержке τ можно в первом приближении считать A(t — т) ≈ A(t) и Ф(t — т) ≈ Ф (f), а выходной сигнал (4.43) записать следующим образом:
где θ = -wot - фазовый сдвиг в канале, a Таким образом, при узкополосном сигнале малая задержка сводится к некоторому сдвигу фазы. Важно отметить, что даже при очень малых относительных флуктуациях времени задержки τ фазовый сдвиг θ (из-за больших значений wo) может изменяться в очень больших пределах. Для этого достаточно выполнения условия ∆τ >> 1/f0, где ∆τ - среднеквадратическое отклонение задержки, f0 — средняя частота спектра сигнала. Это условие в радиоканалах обычно выполняется. Более сложный случай имеет место, когда сигнал проходит по параллельным путям от входа Канала к его выходу (рис. 4.2), так что на выходе каждого пути сигнал имеет вид (4.44), но значения γ и τ для разных путей различны и к тому же в небольших пределах флуктуируют. Такого рода многопутевое распространение сигнала характерно для большинства радио-, гидроакустических и некоторых других каналов (в том числе проводных). Энергия волны распространяется обычно в неоднородной среде и испытывает отражение от различных неоднородностей. Эти неоднородности могут быть распределены внутри относительно небольшого отражающего (рассеивающего) объёма. В этом случае разности хода (разности значений τ) для отдельных путей невелики. Если по такому каналу направить очень короткий импульс, то и на его выходе импульс будет довольно коротким. Такой канал принято называть однолучевым. Наличие разных путей ("подлучей", как их часто называют [14]) не вызывает в этом случае существенного рассеяния (растяжения) сигнала во времени, но приводит к возникновению явления замираний, которое заключается в более или менее быстрых случайных изменениях передаточной функции канала (мультипликативная помеха). Для пояснения замираний рассмотрим передачу по каналу (см. рис. 4.2) гармонического сигнала с единичной амплитудой u(t) = Re(ejwt). На выходе сигнал
где L — число путей (подлучей, попадающих в точку приёма); γl — коэффициент передачи по l-му подлучу; τl— время распространения l-го подлуча;
Передаточная функция в общем случае зависит от частоты. Если учесть, что вследствие хаотических перемещений отражателей значения γl и τl флуктуируют, то Важной характеристикой канала с замираниями является распределение вероятностей комплексной передаточной функции С другой стороны, согласно (4.45) Откуда Поскольку X и Y образуются в результате сложения большого числа слабо коррелированных величин с ограниченными дисперсиями, к ним обычно можно применить центральную предельную теорему теории вероятности и считать их нормально распределёнными. Для случая, когда все γl одного порядка и фазовые сдвиги достаточно велики, легко показать, что X и Y имеют одинаковые дисперсии Это доказывается так же, как в § 2.6. Фаза результирующего сигнала θ при этом распределена равномерно на интервале (-π,+π) . Дисперсия квадратурных составляющих σ2 равна средней мощности приходящего сигнала. Такие замирания, как и каналы, в которых они проявляются, называются рэлеевскими. Во многих каналах замирания отличаются от рэлеевских. Иногда в одном из подлучей коэффициент передачи γl, значительно больше, чем в других, и можно сказать, что помимо диффузно отражённых подлучей в место приёма приходит и регулярный (не замирающий) луч. В этом случае коэффициент передачи канала Здесь В общем случае, когда четырёхпараметрическое распределение модуля и фазы замирающего сигнала (общая гауссовская модель канала). Соответствующие плотности вероятности даны в [14]. Если по однолучевому каналу с замираниями передаётся относительно узкополосный сигнал, а среднеквадратическое отклонение запаздывания ∆τ в отдельных подлучах удовлетворяет условию ∆τ<<1/Fc (4.46) где Fc — ширина спектра сигнала, то изменения начальных фаз на разных частотах со в спектре сигнала, равные w∆τ, почти одинаковы. При этом все составляющие спектра сигнала замирают "дружно", т.е. их амплитуды и фазы изменяются одинаково. Такие замирания называются общими или гладкими1(Заметим, что условие (4.46) может выполниться при ∆τ>>1/Fc , т.к. в радиоканалах f0 >>Fc). Если же условие (4.46) не выполнено, то в разных областях спектра сигнала процессы замираний не совпадают (селективные по частоте замирания). При этом наблюдаются существенные изменения формы сигнала, что характерно для многолучевых каналов радиосвязи (приходящие в точку приёма сигналы образованы отражением от сильно разнесённых в пространстве рассеивающих объёмов). Быстрота изменений во времени комплексного случайного процесса
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (701)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |