Мегаобучалка Главная | О нас | Обратная связь


Исследование степенного ряда на сходимость



2015-12-07 2699 Обсуждений (0)
Исследование степенного ряда на сходимость 0.00 из 5.00 0 оценок




После небольшой порции теоретического материала переходим к рассмотрению типового задания, которое практически всегда встречается на зачетах и экзаменах по высшей математике.

Пример 1

Найти область сходимости степенного ряда

Задание часто формулируют эквивалентно: Найти интервал сходимости степенного ряда и исследовать его сходимость на концах найденного интервала.

Алгоритм решения довольно прозрачен и трафаретен.

На первом этапе находим интервал сходимости ряда. Почти всегда необходимо использовать признак Даламбера и находить предел . Технология применения признака Даламбера точно такая же, как и для числовых рядов, с ней можно ознакомиться на урокеПризнак Даламбера. Признаки Коши. Единственное отличие – все дела у нас происходят под знаком модуля.

Итак, решаем наш предел:

(1) Составляем отношение следующего члена ряда к предыдущему.

(2) Избавляемся от четырехэтажности дроби.

(3) В числителе по правилу действий со степенями «отщипываем» один «икс». В знаменателе возводим двучлен в квадрат.

(4) Выносим оставшийся «икс» за знак предела, причем, выносим его вместе со знаком модуля. Почему со знаком модуля? Дело в том, что наш предел и так будет неотрицательным, а вот «икс» вполне может принимать отрицательные значения. Поэтому модуль относится именно к нему.

Кстати, почему можно вообще вынести за знак предела? Потому-что «динамической» переменной в пределе у нас является «эн», и от этого нашему «иксу» ни жарко ни холодно.

(5) Устраняем неопределенность стандартным способом.

После того, как предел найден, нужно проанализировать, что у нас получилось.

Если в пределе получается ноль, то алгоритм решения заканчивает свою работу, и мы даём окончательный ответ задания: «Область сходимости степенного ряда: » (любое действительное число – случай №2 предыдущего параграфа). То есть, степенной ряд сходится при любом значении «икс». Ответ можно записать эквивалентно: «Ряд сходится при » (значок в математике обозначает принадлежность).

Если в пределе получается бесконечность, то алгоритм решения также заканчивает свою работу, и мы даём окончательный ответ задания: «Ряд сходится при » (или при либо »). Смотрите случай №3 предыдущего параграфа.

Если в пределе получается не ноль и не бесконечность, то у нас самый распространенный на практике случае №1 – ряд сходится на некотором интервале.

В данном случае предел равен . Как найти интервал сходимости ряда? Составляем неравенство:

В ЛЮБОМ задании данного типа в левой части неравенства должен находиться результат вычисления предела, а в правой части неравенства – строго единица. Я не буду объяснять, почему именно такое неравенство и почему справа единица. Уроки носят практическую направленность, и уже достаточно того, что я пересказал своими словами несколько теорем.

Теперь раскрываем модуль по школьному правилу: .
В данном случае:
– интервал сходимости исследуемого степенного ряда.

Половина пути позади.

На втором этапе необходимо исследовать сходимость ряда на концах найденного интервала.

Сначала берём левый конец интервала и подставляем его в наш степенной ряд :

При

Получен числовой ряд, и нам нужно исследовать его на сходимость (уже знакомая из предыдущих уроков задача).

Используем признак Лейбница:
1) Ряд является знакочередующимся.
2) – члены ряда убывают по модулю.

Вывод: ряд сходится.

Исследуем ряд на абсолютную сходимость:
– сходится (случай обобщенного гармонического ряда).

Таким образом, полученный числовой ряд сходится абсолютно.

Далее рассматриваем правый конец интервала , подставляем это значение в наш степенной ряд :

При – сходится.

Таким образом, степенной ряд сходится на обоих концах найденного интервала.

Ответ: Область сходимости исследуемого степенного ряда:

Имеет право на жизнь и другое оформление ответа: Ряд сходится, если

Иногда в условии задачи требуют указать радиус сходимости. Очевидно, что в рассмотренном примере .

Пример 2

Найти область сходимости степенного ряда

Решение: Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Составляем стандартное неравенство:
Ряд сходится при

Слева нам нужно оставить только , поэтому умножаем обе части неравенства на 3:

И раскрываем модуль по школьному правилу :
– интервал сходимости исследуемого степенного ряда.

Исследуем сходимость степенного ряда на концах найденного интервала.
1) При

Обратите внимание, что при подстановке значения в степенной ряд у нас сократилась степень . Это верный признак того, что мы правильно нашли интервал сходимости ряда.

Исследуем полученный числовой ряд на сходимость.

Используем признак Лейбница.
– Ряд является знакочередующимся.
– члены ряда убывают по модулю.
Вывод: Ряд сходится.

Исследуем ряд на абсолютную сходимость:

Сравним данный ряд с расходящимся рядом .
Используем предельный признак сравнения:

Получено конечное число, отличное от нуля, значит, ряд расходится вместе с рядом .

Таким образом, ряд сходится только условно.

2) При – расходится (по доказанному).

Ответ: Область сходимости исследуемого степенного ряда: . При ряд сходится только условно.

В рассмотренном примере областью сходимости степенного ряда является полуинтервал, причем во всех точках интервала степенной ряд сходится абсолютно (см. предыдущий параграф), а в точке , как выяснилось – сходится только условно.

Пример 3

Найти интервал сходимости степенного ряда и исследовать его сходимость на концах найденного интервала

Это пример для самостоятельного решения.

Рассмотрим пару примеров, которые встречаются редко, но встречаются.

Пример 4

Найти область сходимости ряда:

Решение: Найдем интервал сходимости данного ряда. Используем признак Даламбера:

(1) Составляем отношение следующего члена ряда к предыдущему.

(2) Избавляемся от четырехэтажности дроби.

(3) Кубы и по правилу действий со степенями подводим под единую степень. В числителе хитро раскладываем степень , т.е. раскладываем таким образом, чтобы на следующем шаге сократить дробь на . Факториалы расписываем подробно.

(4) Под кубом почленно делим числитель на знаменатель, указывая, что . В дроби сокращаем всё, что можно сократить. Множитель выносим за знак предела, его можно вынести, поскольку в нём нет ничего, зависящего от «динамической» переменной «эн». Обратите внимание, что знак модуля не нарисован – по той причине, что принимает неотрицательные значения при любом «икс».

В пределе получен ноль, а значит, можно давать окончательный ответ:

Ответ: Ряд сходится при

А сначала-то казалось, что этот ряд со «страшной начинкой» будет трудно решить. Ноль или бесконечность в пределе – почти подарок, ведь решение заметно сокращается!

Пример 5

Найти область сходимости ряда

Это пример для самостоятельного решения. Будьте внимательны ;-) Полное решение ответ в конце урока.

Рассмотрим еще несколько примеров, содержащих элемент новизны в плане использования технических приемов.

Пример 6

Найти интервал сходимости ряда и исследовать его сходимость на концах найденного интервала

Решение: В общий член степенного ряда входит множитель , обеспечивающий знакочередование. Алгоритм решения полностью сохраняется, но при составлении предела мы игнорируем (не пишем) этот множитель, поскольку модуль уничтожает все «минусы».

Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Составляем стандартное неравенство:
Ряд сходится при
Слева нам нужно оставить только модуль, поэтому умножаем обе части неравенства на 5:

Теперь раскрываем модуль уже знакомым способом:

В середине двойного неравенства нужно оставить только «икс», в этих целях из каждой части неравенства вычитаем 2:

– интервал сходимости исследуемого степенного ряда.

Исследуем сходимость ряда на концах найденного интервала:

1) Подставляем значение в наш степенной ряд :

Будьте предельно внимательны, множитель не обеспечивает знакочередование, при любом натуральном «эн» . Полученный минус выносим за пределы ряда и забываем про него, поскольку он (как и любая константа-множитель) никак не влияет на сходимость или расходимость числового ряда.

Еще раз заметьте, что в ходе подстановки значения в общий член степенного ряда у нас сократился множитель . Если бы этого не произошло, то это бы значило, что мы либо неверно вычислили предел, либо неправильно раскрыли модуль.

Итак, требуется исследовать на сходимость числовой ряд . Здесь проще всего использовать предельный признак сравнения и сравнить данный ряд с расходящимся гармоническим рядом. Но, если честно, предельный признак сравнения до ужаса мне надоел, поэтому внесу некоторое разнообразие в решение.

Используем интегральный признак.

Подынтегральная функция непрерывна на .

Таким образом, полученный числовой ряд расходится вместе с соответствующим несобственным интегралом.

2) Исследуем второй конец интервала сходимости.
При

Используем признак Лейбница:
– Ряд является знакочередующимся.
– члены ряда убывают по модулю.
Вывод: ряд сходится

Рассматриваемый числовой ряд не является абсолютно сходящимся поскольку – расходится (по доказанному).

Ответ: – область сходимости исследуемого степенного ряда, при ряд сходится только условно.

Пример 7

Найти интервал сходимости ряда и исследовать его сходимость на концах найденного интервала

Это пример для самостоятельного решения.

Кто утомился, может сходить покурить, а мы рассмотрим еще два примера.

Пример 8

Найти интервал сходимости ряда и исследовать его сходимость на концах найденного интервала

Решение: Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Предел по той причине, что числитель и знаменатель одного порядка роста. Более подробно об этом моменте и «турбо»-методе решения читайте в статьеПризнак Даламбера. Признаки Коши.

Итак, ряд сходится при

Умножаем обе части неравенства на 9:

Извлекаем из обеих частей корень, при этом помним старый школьный прикол :


Раскрываем модуль:

И прибавляем ко всем частям единицу:

– интервал сходимости исследуемого степенного ряда.

Исследуем сходимость степенного ряда на концах найденного интервала:

1) Если , то получается следующий числовой ряд:

Множитель бесследно пропал, поскольку при любом натуральном значении «эн» .

И в третий раз обращаю внимание на то, что в результате подстановки сократились степени , а значит, интервал сходимости найден правильно.

По всем признакам для полученного числового ряда следует применить предельный признак сравнения. Какой ряд подобрать для сравнения? Об этой методике я уже рассказывал на урокеРяды для чайников. Повторим.

Определяем старшую степень знаменателя, для этого мысленно или на черновике отбрасываем под корнем всё, кроме самого старшего слагаемого: . Таким образом, старшая степень знаменателя равна . Старшая степень числителя, очевидно, равна 1. Из старшей степени знаменателя вычитаем старшую степень числителя: .

Таким образом, наш ряд нужно сходить со сходящимся рядом .
Используем предельный признак сравнения:


Получено конечное, отличное от нуля число, значит, ряд сходится вместе с рядом .

2) Что происходит на другом конце интервала?
При – сходится.

А вот и вознаграждение за мучения в предыдущем пункте! Получился точно такой же числовой ряд, сходимость которого мы только что доказали.

Ответ: область сходимости исследуемого степенного ряда:

Чуть менее сложный пример для самостоятельного решения:

Пример 9

Найти область сходимости ряда

Достаточно для начала =)

В заключение остановлюсь на одном моменте. Во всех примерах мы использовали признак Даламбера и составляли предел . Всегда ли при решении заданий такого типа нужно применять признак Даламбера? Почти всегда. Однако в редких случаях невероятно выгодно использовать радикальный признак Коши и составлять предел , при этом техника и алгоритм решения задачи остаются точно такими же! Что это за случаи? Это те случаи, когда из общего члена степенного ряда «хорошо» (полностью) извлекается корень «энной» степени.

Следующий урок по теме – Разложение функций в степенные ряды. Примеры решений.

Желаю успехов!

Решения и ответы:

Пример 3: Решение: Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Ряд сходится при
Слева нужно оставить только модуль, поэтому умножаем обе части неравенства на 7

– интервал сходимости исследуемого степенного ряда.
Исследуем сходимость ряда на концах найденного интервала.
1) При
Используем признак Лейбница.
– Ряд является знакочередующимся.
– члены ряда не убывают по модулю.
Вывод: Ряд расходится
2) При
Ряд расходится, так как не выполнен необходимый признак сходимости ряда.
Ответ: – область сходимости исследуемого степенного ряда

Пример 5: Решение: Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Ответ: Ряд сходится при

Почему получилась двойка, а не ноль? Перечитайте классификацию области сходимости степенного ряда. Хотя, наверное, многие уже понимают, почему.

Пример 7: Решение: Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Ряд сходится при
Слева нужно оставить только модуль, умножаем обе части неравенства на :


В середине нужно оставить только «икс», вычитаем из каждой части неравенства 3:

– интервал сходимости исследуемого степенного ряда.
Исследуем сходимость ряда на концах найденного интервала:
1) При
Степень сократилась, значит, мы на верном пути.
Используем признак Лейбница.
Ряд является знакочередующимся.
– члены ряда убывают по модулю.
Ряд сходится по признаку Лейбница.
Исследуем ряд на абсолютную сходимость:

Используем интегральный признак.

Подынтегральная функция непрерывна на .

Таким образом, ряд расходится вместе с соответствующим несобственным интегралом. Ряд сходится только условно.
2) При – расходится (по доказанному).
Ответ: Область сходимости исследуемого степенного ряда: , при ряд сходится только условно.
Область сходимости окончательно можно записать так: , или даже так: .
Примечание: Ряд можно было исследовать на сходимость с помощью предельного признака сравнения.

Пример 9: Решение: Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Ряд сходится при


– интервал сходимости исследуемого степенного ряда.
Исследуем сходимость ряда на концах найденного интервала.
1) При
Сравним данный ряд с расходящимся гармоническим рядом . Используем предельный признак сравнения.

Получено конечное число, отличное от нуля, значит, полученный числовой ряд расходится вместе с гармоническим рядом.
2) При – расходится (по доказанному).
Ответ: область сходимости исследуемого степенного ряда:

Автор: Емелин Александр

 



2015-12-07 2699 Обсуждений (0)
Исследование степенного ряда на сходимость 0.00 из 5.00 0 оценок









Обсуждение в статье: Исследование степенного ряда на сходимость

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2699)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)