Буферные системы крови
Поскольку кровь – не просто внеклеточная жидкость, а взвесь клеток в жидкой среде, то ее кислотно-щелочное равновесие поддерживается совместным участием буферных систем плазмы и клеток крови, главным образом эритроцитов. Различают следующие буферные системы крови: плазменные (гидрокарбонатная, фосфатная, органических фосфатов и белковая) и эритроцитарная (гемоглобиновая, гидрокарбонатная, фосфатная). Главным буфером плазмы крови является гидрокарбонатная система Н2СО3 /НСО3– Гидрокарбонатная(бикарбонатная) буферная система Она состоит из угольной кислоты и гидрокарбонатов (NaHCO3 – во внеклеточной жидкости, КНСО3 – внутри клеток). В организме угольная кислота возникает в результате гидратации диоксида углерода – продукта окисления углеводов, белков и жиров. Причем процесс этот ускоряется под действием фермента карбоангидразы. СО2 + Н2О ⇄ СО2·Н2О ⇄ Н2СО3 Отношение концентраций компонентов в гидрокарбонатной буферной системе крови [Н2СО3] /[НСО3–] = 1 / 20. Следовательно, гидрокарбонатная система имеет буферную емкость по кислоте значительно больше буферной емкости по основанию. Т.е. этот буфер особенно эффективно компенсирует действие веществ, увеличивающих кислотность крови. К числу таких веществ прежде всего относят молочную кислоту, избыток которой образуется в результате интенсивной физической нагрузки. (В замкнутых помещениях часто испытывают удушье – нехватку кислорода, учащение дыхания. Однако удушье связано не столько с недостатком кислорода, сколько с избытком СО2. Избыток СО2 в атмосфере приводит к дополнительному растворению СО2 в крови, а это соответственно приводит к понижению рН, т.е к ацидозу.)
Механизм буферного действия. Компоненты: Н2СО3 /НСО3– В этой системе донором протона является угольная кислота Н2СО3, а акцептором протона – гидрокарбонат-ион НСО3–. Если в кровь поступает кислота и увеличивается концентрация иона водорода, то он взаимодействует с НСО3–, образуя Н2СО3 и приводит к выделению газообразного СО2, который выводится из организма в процессе дыхания через легкие. Н+ + НСО3– Н2СО3 СО2 + Н2О Концентрация слабой кислоты при этом увеличивается, а концентрация соли (сопряженного основания) на ту же величину уменьшается ⇒ рН не изменится, т.к. АК переходит в ПК. ПК и ОК ↑, а АК не изменяется. При поступлении в кровь оснований, они связываются угольной кислотой: ОН–+ Н2СО3 НСО3– + Н2О рН при этом почти не изменится за счет смещения ионизации кислоты вправо в результате связывания одного из продуктов ионизации – протонов – в слабый электролит (воду). Концентрация слабой кислоты при этом уменьшится, а концентрация соли на эту же величину увеличится. рН не изменится, т.к. ПК переходит в АК. ПК и ОК ↓, а АК не изменится.
Главное назначение гидрокарбонатной системы заключается в нейтрализации кислот. Этот буфер является системой быстрого реагирования, т.к. продукт его взаимодействия с кислотами - углекислый газ – быстро выводится через легкие. Гидрокарбонатный буфер определяет в крови кислотно-щелочное равновесие (КЩР) и является щелочным резервом крови (ЩР). Щелочной резерв крови – показатель функциональных возможностей буферных систем крови, представляющий собой количество двуокиси углерода, которое может быть связано 100 мл плазмы крови, предварительно приведенной в состояние равновесия с газовой средой, в которой парциальное давление СО2 составляет 40 мм рт. ст., т.е. способность крови связывать СО2. Гидрокарбонатный буфер содержится также в эритроцитах, межклеточной жидкости и в почечной ткани. Гидрофосфатная буферная система Компоненты Н2РО4–/НРО42– Она состоит из дигидрофосфатов и гидрофосфатов (NaH2РO4 и Na2HРO4 – в плазме крови и межклеточной жидкости, КН2РО4 и К2HРO4 – внутри клеток). Роль донора протона в этой системе играет ион Н2РО4–, а акцептора протона – ион НРО42–. В норме отношение Н2РО4–/НРО42–= 1 / 4. Следовательно, буферная емкость по кислоте больше, чем по основанию. При увеличении концентрации ионов водорода (например, при переработке мясной пищи), происходит их нейтрализация ионами НРО42–. Н+ + НРО42–⇄ Н2РО4–.При увеличении концентрации оснований в организме (например, при употреблении растительной пищи), они нейтрализуются ионами Н2РО4–. ОН–+ Н2РО4– ⇄ НРО42– + Н2О Избыточное количество дигидрофосфат и гидрофосфат ионов выводится почками. В отличие от гидрокарбонатной (в которой восстановление отношения достигается в течение 10-18 часов за счет изменения объема легочной вентиляции), в гидрофосфатной системе полное восстановление отношения компонентов происходит только через 2-3 суток. Фосфатный буфер в крови находится в тесной связи с бикарбонатной буферной системой. Органические фосфаты также обладают буферными свойствами, но мощность их слабее, чем неорганического фосфатного буфера.
Белковая буферная система Буферные свойства белков крови обусловлены способностью аминокислот ионизироваться. Конечные карбокси- и аминогруппы белковых цепей играют в этом отношении незначительную роль, так как таких групп мало. Значительно больший вклад в создание буферной емкости белковой системы вносят боковые группы, способные ионизироваться. Белки образуют буферную систему благодаря наличию кислотно-основных групп в молекуле белков.
К буферным белкам крови относятся как белки плазмы (в особенности альбумин), так и содержащийся в эритроцитах гемоглобин. Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его степени окисления. При нормальных пределах рН оксигемоглобин является более сильной кислотой, чем дезоксигемоглобин. Это обусловлено влиянием кислорода, связанного с железом, на сродство ближайших имидазольных групп гистидина к ионам водорода. Благодаря этому гемоглобин, освобождаясь в тканях от кислорода, приобретает большую способность к связыванию ионов водорода, а в венозной крови в результате выделения углекислого газа тканями, происходит накопление в крови этих ионов. При поглощении кислорода в легких происходят обратные процессы.
Гемоглобиновая буферная система Является, разумеется, частью белкового буфера, но выделяется отдельно в связи с особой локализацией — внутри эритроцитов — и особой функцией. Представлена кислотами гемоглобином и оксигемоглобином и сопряженным им основаниями – соответственно гемоглобинат и оксигемоглобинат ионами. Компоненты НHb /Нb–и НHbО2 /НbО2– Гемоглобиновый буфер – главная буферная система эритроцитов, на долю которой приходится около 75% всей буферной емкости крови. Оксигемоглобин более сильная кислота, чем гемоглобин. Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода от тканей к легким и угольной кислоты. Системы гемоглобина и оксигемоглобина являются взаимопревращающимися системами и существуют как единое целое. Эта система эффективно функционирует только в сочетании с другими буферными системами крови. Эта буферная система в эритроцитах тесно связана с гидрокарбонатной системой. В эритроцитах рН поддерживается постоянным благодаря действию трех буферных систем:
Сила этих кислот и оснований изменяется следующим образом: HHb < H2CO3 < HHbO2 Hb– > HCO3– > HbO2– Перенос протона происходит по схеме:
В капиллярах тканей Кислород отдают тканям оксигемоглобиновая кислота и его сопряженное основание (гемоглобинат-ион). HHbO2 ® O2 + HHb В результате метаболизма накапливаются углекислый газ и вода, образуя угольную кислоту, которая взаимодействует с сильным основанием Hb–с образованием слабой кислоты HHb и основания средней силы НСО3–.
HHb и НСО3–диффундируют через оболочку эритроцитов в плазму и уносятся с током крови в легкие. В капиллярах легких слабая кислота HHb связывает О2, образуется сильная кислота HHbO2, HHb + O2 ® HHbO2 которая частично взаимодействует с основанием HCO3–с образованием Н2СО3,
а частично вместе с сопряженным основанием HbO2–возвращается с током крови в ткани. Образовавшаяся Н2СО3 разлагается под действием фермента карбоангидразы на воду и углекислый газ, Н2СО3 Н2О + СО2 которые выводятся через легкие.
Помимо буферных систем крови, активное участие принимают также система дыхания и мочевыделительная система.
Ацидоз и алкалоз При ряде патологических состояний в крови накапливаются такие большие количества кислот или оснований, что буферные системы крови, дыхательная и выделительная системы уже не могут поддерживать рН на постоянном уровне. В зависимости от того, в какую сторону изменяется реакция крови, различают 2 типа нарушений КЩР. Понижение рН крови по сравнению с нормальным уровнем (рН ‹ 7,37) называется ацидозом, а повышение (рН › 7,43) - алкалозом. Ацидоз – смещение рН в кислую сторону, рН уменьшается, концентрация ионов водорода растет. Алкалоз – смещение рН в щелочную область, рН растет, концентрация ионов водорода уменьшается. Каждый из этих двух типов подразделяется еще на несколько разновидностей в зависимости от причины сдвига рН. Такие сдвиги могут наступать при изменениях вентиляции легких (поражения легких могут сопровождаться увеличением напряжения СО2 в крови, и гипервентиляции приводят к снижению этого напряжения. Подобные состояния называют дыхательным (респираторным) ацидозом или алкалозом. Дыхательный ацидоз Характеризуется повышением парциального давления СО2 и концентрации углекислоты в крови, а также компенсаторным подъемом гидрокарбонатов чаще всего наблюдается: при пневмонии; при недостаточности кровообращения с застоем в малом кругу кровообращения; под влиянием препаратов, угнетающих дыхательный центр (морфий и его производные); при общем наркозе. Дыхательный алкалоз Развивается, когда вследствие альвеолярной гипервентиляции возникает гипокапния - Р (СО2) 36 мм рт. ст. Несмотря на то, что содержание гидрокарбоната несколько падает вследствие уравновешивания между СО2 и Н2СО3, отношение [НСО3] к [α·Р (СО2)] повышается, а поэтому повышается и рН. При стойкой гипокапнии клетки почечных канальцев выводят дополнительное количество гидрокарбоната, восстанавливая нормальное отношение [НСО3] к [α·Р (СО2)]. Восстановление рН может быть почти полным и этот процесс называют компенсированным дыхательным алкалозом. При нарушениях обмена веществ в крови могут накапливаться нелетучие кислоты; напротив, поступление в кровь оснований или потеря НСl могут сопровождаться уменьшением содержания этих кислот. Такие состояния называют метаболическим ацидозом или алкалозом легких. Метаболический алкалоз с первичным повышением концентрации гидрокарбонатов встречается при: Избыточном и бесконтрольном введении щелочных растворов, Упорной рвоте, Дефиците калия в организме, Врожденном алкалозе с гипокалиемией. Метаболический ацидоз, характеризующийся уменьшением концентрации НСО3¯ в плазме, наблюдается при следующих заболеваниях и состояниях: У детей периода новорожденности, Токсические состояния на почве ЖКЗ у детей раннего возраста, Голодание, После длительного введения хлорида аммония или хлорида кальция, Диабетическая кома, Почечная гломерулярная недостаточность. Поскольку рН крови может изменяться также при поражениях почек, сдвиги КЩР, обусловленные почечными или обменными нарушениями объединяют под названием нереспираторный ацидоз или алкалоз. Оценка КЩР Оценка КЩР крови имеет большое значение в клинике. Для такой оценки необходимо измерить ряд показателей, позволяющих выявить у больного ацидоз либо алкалоз и судить о том, является он респираторным или нереспираторным. Заключение о состоянии КЩР позволяет выбрать правильное лечение. Необходимо измерить следующие показатели артериальной крови: 1. РН. По величине рН можно судить о том, является ли содержание ионов Н в крови нормальным (рН 7,37-7,43) или сдвинуто в ту либо иную сторону. В то же время нормальное значение рН еще не позволяет с уверенностью говорить об отсутствии нарушения КЩР, т.к. в этом случае нельзя исключить компенсированный ацидоз, либо алкалоз. 2. Парциальное давление углекислого газа. Повышение или снижение напряжения СО2 по сравнению с его нормальным уровнем (35-45 мм рт. ст.) служит признаком респираторного нарушения КЩР. 3.Избыток оснований (base excess, ВЕ). По величине ВЕ можно сделать вывод о наличии нереспираторного нарушения КЩР. Изменения этой величины (норма от-2,5 до +2,5 ммоль/л) непосредственно отражают снижение или увеличение содержания нелетучих кислот в крови. 4.Стандартный бикарбонат. В качестве показателя нереспираторного нарушения КЩР иногда используют так называемый “стандартный бикарбонат”. Это величина соответствует содержанию бикарбоната в плазме крови, полностью насыщенной с газовой смесью. В норме “стандартный бикарбонат” равен 24 ммоль/л. Этот показатель не отражает буферный эффект белков, поэтому он сравнительно малоинформативен.
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (5261)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |