Мегаобучалка Главная | О нас | Обратная связь  


Оценка абсолютной погрешности метода средних прямоугольников




Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Суть метода прямоугольников.

Пусть функция y = f(x) непрерывна на отрезке [a; b]. Нам требуется вычислить определенный интеграл .

Обратимся к понятию определенного интеграла. Разобьем отрезок [a;b] на n частей точками . Внутри каждого отрезка выберем точку . Так как по определению определенный интеграл есть предел интегральных сумм при бесконечном уменьшении длины элементарного отрезка разбиения , то любая из интегральных сумм является приближенным значением интеграла .

Суть метода прямоугольников заключается в том, что в качестве приближенного значения определенного интеграла берут интегральную сумму (далее мы покажем, какую именно интегральную сумму берут в методе прямоугольников).

Метод средних прямоугольников.

Формула метода средних прямоугольников.

Если отрезок интегрирования [a;b] разбить на РАВНЫЕ части длины h точками (то есть ) и в качестве точек выбрать СЕРЕДИНЫ элементарных отрезков (то есть ), то приближенное равенство можно записать в виде . Это и есть формула метода прямоугольников. Ее еще называют формулой средних прямоугольников из-за способа выбора точек .



называют шагом разбиения отрезка [a;b].

Приведем графическую иллюстрацию метода средних прямоугольников.

Из чертежа видно, что подынтегральная функция y=f(x) приближается кусочной ступенчатой функцией на отрезке интегрирования.

С геометрической точки зрения для неотрицательной функции y=f(x) на отрезке[a;b] точное значение определенного интеграла представляет собой площадь криволинейной трапеции, а приближенное значение по методу прямоугольников – площадь ступенчатой фигуры.

Оценка абсолютной погрешности метода средних прямоугольников.

Перейдем к оценке абсолютной погрешности метода прямоугольников. Сначала оценим погрешность на элементарном интервале. Погрешность метода прямоугольников в целом будет равна сумме абсолютных погрешностей на каждом элементарном интервале.

На каждом отрезке имеем приближенное равенство . Абсолютную погрешность метода прямоугольников на i-ом отрезке вычисляем как разность между точным и приближенным значением определенного интеграла: . Так как есть некоторое число и , то выражение в силу четвертого свойства определенного интеграла можно записать как . Тогда абсолютная погрешность формулы прямоугольников на i-ом элементарном отрезке будет иметь следующий вид

Если считать, что функция y = f(x) имеет в точке и некоторой ее окрестности производные до второго порядка включительно, то функцию y = f(x)можно разложить в ряд Тейлора по степеням с остаточным членом в форме Лагранжа:

По свойствам определенного интеграла равенства можно интегрировать почленно:

где .

Таким образом, и .

Абсолютная погрешность формулы прямоугольников на отрезке [a; b] равна сумме погрешностей на каждом элементарном интервале, поэтому
и .

Полученное неравенство представляет собой оценку абсолютной погрешности метода прямоугольников.

К началу страницы




Читайте также:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1792)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7