Мегаобучалка Главная | О нас | Обратная связь


Аккумулирование горячей воды



2015-12-15 2312 Обсуждений (0)
Аккумулирование горячей воды 0.00 из 5.00 0 оценок




 

Неравномерное потребление горячей воды требует синхронного изменения отпуска теплоты со станции или соответствующего приготовления ее на месте потребления. Ввиду неосуществимости полного соответствия выработки теплоты на горячее водоснабжение и его потребления наблюдается постоянное нарушение отопительно-вентиляционных режимов, требующих создания на станции излишних резервов теплоприготовительного оборудования.

 

 

Рис. 3.10. Графики расхода теплоты на горячее водоснабжение:
а – суточный; б – интегральный; 1 – изменение расхода теплоты по часам суток; 2 – среднечасовой расход теплоты за сутки; 3 – фактическое потребление теплоты; 4 – отпускаемая теплота

 

Установка аккумуляторов горячей воды дает возможность выровнять нагрузку станционных водонагревателей и тем самым уменьшить запас пиковой мощности на тепловой станции, вследствие чего обеспечивается меньшая разрегулировка расходов теплоты на отопление и вентиляцию. Аккумуляторы на абонентских вводах позволяют устранить колебания температуры горячей воды при минимальных и максимальных водоразборах и уменьшить расчетную теплопроизводительность местных подогревателей.

Емкость аккумулятора определяется с помощью интегрального графика, который строится на основе заданного суточного расхода теплоты (рис. 3.10). Для построения интегрального графика необходимо определить по суточному графику произведение часового расхода теплоты Qi по соответствующей продолжительности ni использования теплоты. Полученное произведение, представляющее расход теплоты за время ni, на интегральном графике откладывается на ординате в конце того же отрезка времени. Последующие значения расходов теплоты Qini за последующие промежутки времени ni на интегральном графике суммируются с предыдущими. В итоге получается ломаная линия 3 фактического потребления теплоты, каждая ордината этого графика выражает общий расход теплоты от начала потребления до рассматриваемого момента. Ордината графика фактического потребления теплоты в конце суток показывает расход теплоты за сутки.

Так как теплота из тепловых сетей поступает равномерно и непрерывно, тo график сообщенной потребителю теплоты выражается прямой линией 4. Тангенс угла наклона графика сообщенной теплоты численно равен среднечасовому расходу теплоты за сутки

 

. (3.1)

 

Меньший наклон участков линии 3 по сравнению с линией 4 означает, что поступление теплоты из сетей превосходит фактическое потребление и, наоборот, при большем наклоне участков линии 3 фактическое потребление теплоты превосходит его поступление из тепловых сетей, что при отсутствии аккумуляторов недопустимо. Разность ординат линий 3 и 4 показывает количество неспользованной теплоты из тепловых сетей, которое могло быть накоплено в аккумуляторе. Если неиспользуемая теплота аккумулируется, то разность ординат графиков поступления и потребления теплоты в каждый момент времени указывает на наличие запаса теплоты в аккумуляторе. Ордината Qмакс количественно выражает наибольший запас теплоты.

При определении необходимого запаса теплоты в аккумуляторе среднечасовой расход теплоты, кВт, найденный по формуле (3.1), должен быть не менее значения

 

, (3.2)

где Gи – расход горячей воды за сутки наибольшего водопотребения, м3/сут; r – плотность воды, кг/м3; с – теплоемкость воды, кДж/(кг×°С); tг – средняя температура горячей воды в трубопроводах горячего водоснабжения; Т – время потребления горячей воды в сутки, ч; Qт.п – потери теплоты в подающих и циркуляционных трубопроводах, кВт.

Расход горячей воды за сутки наибольшего водопотребления находится по формуле

 

, (3.3)

где gи – норма расхода горячей воды за сутки наибольшего водопотребления, л/сут; m – количество потребителей (жителей) в здании или группе зданий.

 

Для жилых домов, общежитий, гостиниц, санаториев, больниц, школ и детских учреждений время потребления горячей воды в сутки принимают 24 ч. Для остальных общественных зданий это время принимают равным числу часов работы их в сутки, но не менее 10 ч, а при наличии аккумуляторов – по числу часов зарядки аккумуляторов. Для вспомогательных зданий промышленных предприятий время потребления горячей воды должно быть равно продолжительности зарядки аккумуляторов в смену.

При отсутствии суточных графиков расхода теплоты на горячее водоснабжение интегральный график может быть построен по безразмерным суточным графикам, приведенным для различных категорий потребителей в справочной литературе. В безразмерных графиках ордината 100% расхода теплоты соответствует среднечасовому расходу теплоты, определенному по формуле (3.2).

Применение аккумуляторов может сократить время потребления теплоты из тепловых сетей. Момент времени и продолжительность отключения тепловых сетей выбирается в зависимости от характера изломов линий интегрального графика. Например, для интегральных графиков на рис. 3.11 целесообразно выбрать продолжительность отключения сетей на время n1 и n2. В период прекращения поступления теплоты из тепловых сетей горячее водоснабжение производится только из аккумулятора. Продолжительность отключения сетей подбирается так, чтобы запас теплоты в начале и в конце суток был одинаковым.

 

 

Рис. 3.11. Варианты аккумулирования теплоты:
1 – фактическое потребление теплоты; 2 – поступление теплоты из тепловых сетей;
n1 и n2 – продолжительность отключения тепловых сетей; n – продолжительность зарядки аккумулятора

 

В период пользования горячей водой запас теплоты в аккумуляторе изменяется от максимального Qмaкс до минимального Qмин значений. Если теплота аккумулируется при переменном объеме воды с постоянной ее температурой, то необходимая емкость акмулятора, м3, находится из выражения

 

, (3.4)

где Qмaкс – запас теплоты, кВт×ч.

 

Если теплота аккумулируется при постоянном объеме воды за счет изменения ее температуры, то емкость аккумулятора определяется по формуле

 

, (3.5)

где tмакс и tмин – максимальная и минимальная температуры горячей воды, °С.

 

В аккумуляторе постоянного объема накопление теплоты осуществляется за счет увеличения нагрева воды. Следовательно, большему и меньшему запасу теплоты в аккумуляторе на интегральном графике (рис. 3.11) соответствуют максимальная и минимальная температуры воды. Наибольшая температура воды в аккумуляторе не должна превышать 75 °С, а наименьшая – быть не ниже 40 °С.

При наличии в жилых и общественных зданиях автоматизированных систем горячего водоснабжения, а в производственных зданиях душевых сеток (не более десяти) применение аккумуляторов не обязательно.

 

 



2015-12-15 2312 Обсуждений (0)
Аккумулирование горячей воды 0.00 из 5.00 0 оценок









Обсуждение в статье: Аккумулирование горячей воды

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2312)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)