Мегаобучалка Главная | О нас | Обратная связь


Общая характеристика моделей



2015-12-15 269 Обсуждений (0)
Общая характеристика моделей 0.00 из 5.00 0 оценок




Раздел 1. Введение. Понятие математической

Модели.

Метод изучения природных явлений и процессов с использованием их моделей широко используется человечеством с древнейших времен. Моделью называют некий объект, отражающий основные, наиболее характерные черты изучаемого объекта, которые характеризуют исследователя в данный момент времени. Например, если мы интересуемся особенностями движения объекта, то его моделью для этой цели может быть некая точка, характеризующая движение центра тяжести объекта под действием приложенной силы. Если мы хотим исследовать закономерности протекания нефти в магистральном нефтепроводе, то моделью такого объекта может быть трубка небольшого диаметра, по которой протекает жидкость, имеющая свойства, аналогичные свойствам нефти.

Таким образом, для исследования поведения объекта путем исследования его модели, необходимо, прежде всего, создать модель объекта. Модель должна отражать не все свойства объекта, а только те, которые интересуют исследователя в данный момент времени. Поэтому для одного и того же объекта могут быть разные модели, в зависимости от целей исследования.

Различают два основных вида моделирования:

1. Физическое моделирование.В этом случае физическая природа процессов, происходящих в модели и в объекте, одинакова и они отличаются только размерами или темпом процессов, происходящих в модели в объекте.

Например, если мы хотим исследовать закономерности протекания жидкости в трубопроводах большого диаметра, мы можем исследовать особенности течения жидкости в трубопроводах малого диаметра и обобщить полученные результаты на основе использования теории подобия.

Центральным положением этой теории является понятие подобия объектов, возникшее в геометрии и перенесенное в физику. По аналогии с геометрическим подобием вводится понятие физического подобия. Это может быть, например, гидродинамическое подобие (подобие потоков текучей жидкости), тепловое (подобие полей температур), механическое (подобие распределения сил, скоростей, энергетических характеристик, а позже кибернетическое (подобие процессов переработки информации в саморегулирующихся кибернетических системах). Основной постулат теории подобия гласит: правильные результаты при моделировании можно получить, обеспечив физическое подобие модели изучаемому объекту.

Первоначально понятие физического подобия рассматривалось лишь в отношении явлений и объектов одной физической природы. Например, потоки жидкости в моделируемом аппарате считалось обязательным воспроизводить лишь текучей жидкостью в малой геометрической копии аппарата. При этом часто возникала проблема подбора жидкости для модели. Пропорциональное изменение размеров необходимо было компенсировать в модели соответствующим изменением свойств жидкости. Затем понятие физического подобия было расширено. В это подобие стало возможным вовлекать и явления разной природы. А.А. Гухман предложил называть первый случай подобия физически однородных явлений – подобием в узком смысле, а второй, более общий случай - подобия для явлений различной физической природы – физической аналогией.

Фундаментальной является так называемая тройная аналогия процессов переноса: распространения тепла (теплопроводность), переноса массы ( диффузия, фильтрация), перемещение электрического заряда (электрический ток). Законы переноса удается записать для перечисленных процессов единым уравнением, связывающим поток текучей субстанции (вещество, энергия) и проводимость среды. Все эти три явления, хотя имеют совершенно различную природу процессов, имеют одинаковое уравнение, описывающее эти процессы. Таким образом, это уравнение является математической моделью для этих процессов. Поэтому, изучая закономерности процесса переноса электричества, можно изучать явления переноса массы в аналогичных условиях. Таким образом, мы подошли к определению математического моделирования.

2. Математическое моделирование.В этом случае физическая природа процессов, происходящих в модели и в объекте, может быть совершенно различна, но оказываются одинаковыми уравнения, описывающие изменение процессов в модели и в объекте.

Например, перенос вещества описывается законом Фика:

(1.1)

Перенос тепла описывается уравнением Фурье:

(1.2)

Перенос электричества описывается законом Ома:

(1.3)

Все эти три уравнения имеют одинаковую структуру, они состоят из двух сомножителей, первый из которых является коэффициентом пропорциональности данного процесса, а второй является величиной градиента концентрации (с) температуры (Т), или напряжения (U) в направлении потока. Уравнения (1.1) – (1.3) являются математической моделью этих трех процессов и описывают их основные свойства – а именно, способность к переносу различных субстанций в поле распределения соответствующей величины в пространстве. Эти три процесса имеют одинаковую математическую модель и являются изоморфными. Каждое из трех рассмотренных явлений может быть моделью для исследований процессов переноса, описываемых моделью типа

(1.1)-(1.3). На этом основании можно, например, исследовать закономерности распространения вещества путем диффузии, исследуя закономерности распространения электрического тока в электропроводящей среде. Такой метод ранее применялся в исследованиях. Он называется методом прямой аналогии. С появлением аналоговых вычислительных машин они стали применяться для исследования процессов по их математическим моделям на аналоговых машинах.Аналоговые вычислительные машины состоят из элементов и блоков, выполняющих отдельные математические операции – умножение, сложение, деление, операции дифференцирования и интегрирования. Когда блоки машины соединялись в последовательности, соответствующей математической модели объекта, аналоговая вычислительная машина становилась моделью объекта, так как в ней напряжения электрического тока на выходе отдельных решающих блоков описывало изменения физических величин в моделируемом объекте. Мы в этом случае также реализуем метод прямой аналогии, когда каждому явлению в объекте мы ставим в соответствие определенный узел электрической схемы. Метод прямой аналогии несет в себе черты подобия в узком смысле. При моделировании сложных объектов создание таких моделей становится сложным, а сами модели становятся громоздкими.

Основополагающим принципом в моделировании является принцип изоморфизма: если две системы изоморфны, то каждую из них можно считать моделью другой. Однако, так как модели отражают не все стороны явления или процесса , а только наиболее существенные с точки зрения исследователя, то и системы являются не полностью изоморфными, а только частично, по ограниченному объему свойств и характеристик. Такое неполное соответствие называют гомоморфизмом. Гомоморфизм также предполагает однозначное соответствие между объектами, но это соответствие не взаимно. Из гомоморфных объектов один обязательно моделируемый («натура»), а второй – модель. Их нельзя поменять местами, в отличие от изоморфных объектов.

При моделировании кибернетических систем можно соблюдать два вида подобия:

1) функциональное – совпадение функций систем в одинаковых условиях

2) динамическое – совпадение между движением модели и объекта, т.е. между последовательно изменяющимися состояниями модели и объекта.

Пусть мы имеем две системы:

 
 

 


Рис.1.1. Сопоставление изоморфных систем.

Пусть

xi(tN) = xi(tM) i,j = , m=n (1.4)

значения компонентов вектора входных переменных систем N и M, соответственно, а tN и tM темп протекания процессов в системах N и M

Если реакции этих систем также одинаковы:

yi(tN) = yi(tM) i,j = , m=n (1.5)

а течение времени совпадает с натуральным:

(1.6)

то системы M и N изоморфны. Но условия (1.4)-(1.6) очень «жесткие». Для их выполнения требуется, чтобы множества переменных состояния X и Y модели и объекта совпадали, т.е. они должны включать все возможные в реальной системе воздействия и реакции на них. Темпы развития процессов в системах N и M должны совпадать. Поэтому всякий реальный объект является строго изоморфным только самому себе. Моделирование возможно только при упрощении условий (1.4)-(1.6). Прежде всего, необходимо уменьшить число компонентов у векторов XM и YM в модели по сравнению с моделируемым объектом. Это достигается тем, что в модели воспроизводятся не все свойства объекта, а только основные. Учитываются разные темпы протекания процессов в модели и в объекте. Это приводит к тому, что условия (1.4)-(1.6) могут быть записаны следующим образом:

xi(tN) = xi(tM) i,j = , m<n (1.7)

 

tM =r× tN = c×t (1.8)

где r и с –коэффициенты пересчета масштаба времени. Введение масштабных коэффициентов времени позволяет изменить в модели темпы протекания процессов и сделать их более удобными для детального исследования. Наконец, условие (1.5) иногда целесообразно изменить следующим образом для удобства измерений на модели:

yi(tM) = Kj×yi(tN) i,j = , (1.9)

Где Kj – множители изменения масштаба реакций системы на модели по сравнению с реакциями натуры; аналогичные изменения можно ввести в условие (1.7). Системы N и M, соответствующие условиям (1.7)-(1.9) , однозначно соответствуют друг другу, но это соответствие не взаимно. Система N (натура) всегда богаче по содержанию, чем система М (модель). Поэтому эти системы не изоморфны, но гомоморфны друг другу. Отсюда следуют следствия:

Следствие 1. Из того, что М есть модель N не следует, что N моделирует М. .

Следствие 2. Сходство модели с оригиналом всегда неполное.

Следствие 3. Реальной системе на разных этапах ее исследования можно поставить в соответствие разные гомоморфные модели.

 

Общая характеристика моделей



2015-12-15 269 Обсуждений (0)
Общая характеристика моделей 0.00 из 5.00 0 оценок









Обсуждение в статье: Общая характеристика моделей

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (269)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)