Мегаобучалка Главная | О нас | Обратная связь


Предел функции нескольких переменных



2015-12-15 930 Обсуждений (0)
Предел функции нескольких переменных 0.00 из 5.00 0 оценок




Раздел 6. Дифференциальное исчисление функции нескольких переменных

Предел и непрерывность функции нескольких переменных

  1. Понятие функции нескольких переменных

При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты остаются справедливыми для функций произвольного числа переменных.

Пусть дано множество , и пусть указано правило (закон), по которому каждой точке ставится в соответствие единственное действительное число . В этом случае говорят, что задана функция с областью определения и областью значений . При этом и называют независимыми переменными (аргументами), а зависимой переменной (функцией).

Функцию иногда записывают в виде .

Пример. На множестве определим функцию ; тогда ее областью значений является отрезок . Эту функцию можно определить, конечно, и на всей плоскости ; в этом случае имеем и .

Графиком функции называют множество точек пространства . Обычно графиком функции является некоторая поверхность.

Расстоянием между двумя произвольными точками и евклидова пространства называется число , определяемое формулой:

.

Множество точек называется открытым кругом радиуса с центром в точке , окружностью радиуса с центром в точке .

Открытый круг радиуса с центром в точке называется -окрестностью точки .

Определение. Точка называется внутренней точкой множества , если существует -окрестность точки , целиком принадлежащая множеству (т.е. ).

Определение. Точка называется граничной точкой множества , если в любой ее -окрестности содержатся точки, как принадлежащие множеству , так и не принадлежащие ему.

Замечание. Граничная точка множества может как принадлежать этому множеству, так и не принадлежать ему.

Определение. Множество называется открытым, если все его точки – внутренние.

Определение. Множество называется замкнутым, если оно содержит все свои граничные точки. Множество всех граничных точек множества называется его границей (и часто обозначается символом ). Заметим, что множество является замкнутым и называется замыканием множества .

Пример. Если , то . При этом .

Определение. Точка называется предельной точкой множества , если в любой -окрестности точки содержатся точки множества , отличные от .

Замечание. Предельная точка множества может принадлежать, а может не принадлежать этому множеству.

Пример. Множество совпадает с множеством своих предельных точек. Множество имеет единственную предельную точку .

 

Предел функции нескольких переменных

 

Определение. Говорят, что последовательность точек сходится при к точке , если стремится к 0 при стремящемся к . В этом случае точку называют пределом указанной последовательности и пишут: при .

Можно показать, что при тогда и только тогда, когда одновременно числовая последовательность сходится к числу , а числовая последовательность сходится к числу при (т.е. сходимость последовательности точек пространства эквивалентна покоординатной сходимости).

Пусть и – предельная точка множества .

Определение. Число называют пределом функции при , если для такое, что , как только . В этом случае пишут

или при .

Замечание.В случае функции одной переменной для существования предела в точке необходимо и достаточно равенство лишь двух чисел – пределов по двум направлениям: справа и слева от предельной точки . Для функции двух переменных стремление к предельной точке на плоскости может происходить по бесконечному числу направлений (и необязательно по прямой).

Пример. Найти .

Пусть стремление к предельной точке происходит по прямой . Тогда

.

Предел, очевидно, не существует, так как число зависит от .

Пример. Найти .

По любой прямой предел один и тот же:

.

С другой стороны, пусть стремление к предельной точке происходит по кривой . Тогда

.

Следовательно, предела не существует.

Сформулируем понятие предела функции для случая, её аргументы стремятся к к бесконечности. Ограничимся случаем, когда , (понятие предела функции в остальных случаях формулируются аналогично).

Определение. Число называют пределом функции при и , если для такое, что из неравенств и следует неравенство . Этот факт коротко записывают так:

.

Теорема. Если существуют и , то

;

;

,

где предельная точка может быть конечной или бесконечной.

Справедливы аналоги и других теорем о свойствах пределов функций одной переменной.

 



2015-12-15 930 Обсуждений (0)
Предел функции нескольких переменных 0.00 из 5.00 0 оценок









Обсуждение в статье: Предел функции нескольких переменных

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (930)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)