Мегаобучалка Главная | О нас | Обратная связь


ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ В ПАКЕТЕ МАТЕМАТИЧЕСКИХ РАСЧЕТОВ MATHCAD



2016-01-05 1973 Обсуждений (0)
ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ В ПАКЕТЕ МАТЕМАТИЧЕСКИХ РАСЧЕТОВ MATHCAD 0.00 из 5.00 0 оценок




 

Введением конечно-разностных соотношений в уравнение теплопроводности – дифференциальное уравнение второго порядка в частных производных – отыскание решения уравнения свелось к определению решений систем линейных алгебраических уравнений относительно значений температуры в точках сетки. Эти системы могут решаться любым из методов решения систем линейных алгебраических уравнений. В пакете MathCAD существует функция решения систем линейных алгебраических уравнений методом Гаусса lsolve. Воспользуемся ею для получения решения уравнения теплопроводности (1.1) с начальным (1.11) и граничными (1.12) условиями. Аргументами функции lsolve являются матрица коэффициентов перед неизвестными и столбец свободных членов системы. В данном случае предстоит многократное решение системы с одинаковой матрицей коэффициентов. Изменяются столбцы свободных членов.

Начиная решение, введем исходные данные и вычислим значения температуры на нулевом временном слое по начальным условиям (1.11). Далее зададим матрицу коэффициентов системы - матрицу А и столбец свободных членов (1.18) (рис.3.1). Находим решение системы, т.е. температуру на первом временном слое u1, и показываем результат вычислений (рис.3.2). Определена температура для внутренних узлов сетки. Для того чтобы найти температуру на втором временном слое, нужно решить систему с измененным столбцом свободных членов. Для получения решения на втором временном слое нужно пересчитать свободный столбец системы и снова ее решить. Особенностью вычисления в пакете MathCAD является то, что индексы у векторов отсчитываются от нуля, поэтому появляется несоответствие в записи формул. Решение для второго слоя u2 приведено на рис. 3.3.

 

Рис. 3.1. Подготовка данных для решения уравнения теплопроводности на первом временном слое

 

 

Рис. 3.2. Решение уравнения теплопроводности на первом временном слое

 

 

Рис. 3.3. Решение уравнения теплопроводности на втором временном слое

 

Рис. 3.4. Полное решение в MathCAD

Повторяя вычисления столбца свободных членов и решения системы еще десять раз, получим вектора u1, u2, u3,…, u15, содержащие значения температуры во внутренних точках сетки. Полное решение представлено на рис. 3.4. Графическое полного решения можно увидеть на рис. 3.7.

Далее предстоит собрать в одну матрицу начальные значения, краевые и вычисленные во внутренних узлах.

 

Рис. 3.5. Формирование матрицы с результатами

 

Рис. 3.6. Результат решения уравнения теплопроводности

Рис. 3.7. Графическое преставление решения



2016-01-05 1973 Обсуждений (0)
ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ В ПАКЕТЕ МАТЕМАТИЧЕСКИХ РАСЧЕТОВ MATHCAD 0.00 из 5.00 0 оценок









Обсуждение в статье: ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ В ПАКЕТЕ МАТЕМАТИЧЕСКИХ РАСЧЕТОВ MATHCAD

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1973)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)