Мегаобучалка Главная | О нас | Обратная связь


Химический состав: Сталь 20ХФ



2016-01-05 728 Обсуждений (0)
Химический состав: Сталь 20ХФ 0.00 из 5.00 0 оценок




МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ, МОЛОДЕЖИ И СПОТРУ УКРАИНЫ

ОДЕССКИЙ НАЦИОНАЛЬНЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИПТДМ

Кафедра технологий конструкционных материалов и материаловедения

 
 


Курсовая работа

по дисциплине “Материаловедение и технология материалов”

По теме:

«Упрочнение деталей работающих на износ»

Студент: Чуба С.А.

Руководитель: Клименко Н.Н.

 

 

Одесса 2012

 

 
 


Введение:

 

В настоящее время все, в основном, пальцы шаровых шарниров характеризуются наличием стержня округлой формы, сочетающейся резьбовой цилиндрической частью с конической. В нижней части стержня расположена головка шарового пальца, выполненная в форме шара.

 

 

Рис. 1 Палец шарнира.

 

1–палец шарнира;

2–грязезащитныйколпачок;

3–корпусшарнира;

4–вкладыш;

5–пружина;

Заглушка

 

 

Палец шарнира, это деталь шаровой опоры, которая в свою очередь используется в подвеске автомобиля.

 

Шаровая опора – узел, соединяющий ступицу колеса и рычаг подвески.

 

 

Рис. 2 Общий вид шаровой опоры.

 


Задача шаровой опоры – позволять колесу (ступице колеса, если быть точным) двигаться в вертикальном направлении, сохраняя его положение в горизонтальной плоскости. Конструктивно шаровая опора это конусообразный «палец» с шаровидной или грибовидной основой, укрепленной внутри корпуса. Современные шаровые опоры часто изготавливаются неразъемными, и корпус после установки пальца просто завальцовывают так, чтобы сохранить движение «пальца» на небольшие углы.

 

При езде шаровая опора испытывает на себе огромные нагрузки, так как в отдельные моменты времени на ней может сосредотачиваться изрядная часть веса автомобиля, не считая постоянных ударов.

 

 

Рис. 3 Подвеска автомобиля.

 

Выбор сталей и их химические составы.

Углеродистая сталь.

Из углеродистой я выбрал Сталь 10она подходит для изготовления шайб, бачков, заклепок, пальцев и т.д.

После цементации она используется для деталей, от которых требуется высокая твердость поверхности и допускается низкая прочность сердцевины.

Химический состав: Сталь 10

Химический элемент %
Кремний (Si) 0.17-0.37
Медь (Cu), не более 0.25
Мышьяк (As), не более 0.08
Марганец (Mn) 0.35-0.65
Никель (Ni), не более 0.25
Фосфор (P), не более 0.035
Хром (Cr), не более 0.15
Сера (S), не более 0.04
Углерод (С) не более 0.7-0.14

 

 

Легелированая сталь

 

 

Из легелированой я выбрал Сталь 20ХФона предназначена для не крупных деталей (в связи с небольшой прокаливаемостью), подвергаемых цемантации и закалке с низким отпуском (зубчатые колеса, пальцы шарниров, распределительные валики)

Сталь 20ХФ может применятся в качестве улутшаемой.

 

 

Химический состав: Сталь 20ХФ

Химический элемент %
Бор (B) 0.001-0.005
Кремний (Si) 0.17-0.37
Медь (Cu), не более 0.30
Марганец (Mn) 0.60-0.90
Никель (Ni) 0.80-1.10
Титан (Ti), не более 0.06
Фосфор (P), не более 0.035
Хром (Cr) 0.70-1.10
Сера (S), не более 0.035
Углерод (С) не более 0.17-0.23

Роль легирующих элементов и углерода

Сталь является многокомпонентным сплавом, содержащим углерод и ряд постоянных или неизбежных примесей Мп, Si, S, Р, О, N, Н и др., которые оказывают влияние на ее свойства. Присутствие этих примесей объясняется трудностью удаления части из них при выплавке (Р, S), переходом их в сталь в процессе ее раскисления (Мп, Si) или из шихты — легированного металлического лома (Cr, Ni и др.). Эти же примеси, но в больших количествах, присутствуют и в чугунах.

Влияние углерода. Структура стали после медленного охлаждения состоит из двух фаз — феррита и цементита. Количество цементита возрастает в стали прямо пропорционально содержанию углерода.

Частицы цементита повышают сопротивление деформации, и, кроме того, они уменьшают пластичность и вязкость. Вследствие этого с увеличением в стали углерода возрастает твердость, временное сопротивление, предел текучести, уменьшаются относительное удлинение, относительное сужение и ударная вязкость.

Влияние кремния и марганца. Содержание кремния в углеродистой стали в качестве примеси обычно не превышает 0,35—0,4 %, а марганца 0,5—0,8 %. Кремний и марганец переходят в сталь в процессе ее раскисления при выплавке. Они раскисляют сталь, т. е. соединяясь с кислородом закиси железа FeO, в виде окислов переходят в шлак; раскисление улучшает свойства стали. Кремний, дегазируя металл, повышает плотность слитка.

Кремний, остающийся после раскисления в твердом растворе (в феррите), сильно повышает предел текучести. Это снижает способность стали к вытяжке и особенно холодной высадке. В связи с этим в сталях, предназначенных для холодной штамповки и холодной высадки, содержание кремния следует брать пониженным.

Влияние серы. Сера является вредной примесью в стали. С железом она образует химическое соединение FeS, которое практически нерастворимо в нем в твердом состоянии, но растворимо в жидком металле. Соединение FeS образует с железом легкоплавкую эвтектику с температурой плавления 988 °С. Эта эвтектика образуется даже при очень малых содержаниях серы. Кристаллизуясь из жидкости по окончании затвердевания, эвтектика преимущественно располагается по границам зерна. При нагревании стали до температуры прокатки или ковки (1000—1200 °С) эвтектика расплавляется, нарушается связь между зернами металла, вследствие чего при деформации стали в местах расположения эвтектики возникают надрывы и трещины. Это явление носит название красноломкости.

Присутствие в стали марганца, обладающего большим сродством к сере, чем железо, и образующего с серой тугоплавкое соединение MnS, практически исключает красноломкость. В затвердевшей стали частицы MnS располагаются в виде отдельных включений. В деформированной стали они вытянуты в направлении прокатки.

Сернистые включения сильно снижают механические свойства, особенно ударную вязкость и пластичность в поперечном направлении вытяжки при прокатке и ковке, а также предел выносливости. Работа зарождения трещины а3 не зависит от содержания серы, а работа развития трещины ар с увеличением содержания серы резко падает. Свариваемость и коррозионную стойкость сернистые включения ухудшают. Содержание серы в стали строго ограничивается, оно не должно превышать 0,035—0,06 %.

Влияние фосфора. Фосфор является вредной примесью, и содержание его в стали допускается не более 0,025—0,045 %.

Растворяясь в феррите, фосфор сильно искажает кристаллическую решетку, при этом увеличиваются временное сопротивление и предел текучести, а пластичность и вязкость уменьшаются. Снижение вязкости тем значительнее, чем больше в стали углерода. Фосфор повышает порог хладноломкости стали и уменьшает работу развития трещины. Сталь, содержащая фосфор на верхнем пределе, для промышленных плавок (0,045 %), имеет работу распространения трещины в 2 раза меньшую, чем сталь, содержащая менее 0,005 % Р. Каждая 0,01 % Р повышает порог хладноломкости стали на 20—25 °С.

Вредное влияние фосфора усугубляется тем, что он обладает большой склонностью к ликвации. Вследствие этого в серединных слоях слитка отдельные участки обогащаются фосфором и имеют резко пониженную вязкость. Современные методы получения стали не обеспечивают глубокого очищения металла от фосфора.

Влияние азота, кислорода и водорода. Азот и кислород присутствуют в стали в виде хрупких неметаллических включений, как твердые растворы или в свободном виде; они располагаются в дефектных участках металла (раковинах, трещинах и др.). Примеси внедрения (азот, кислород), концентрируясь в зернограничных объемах и образуя выделения нитридов и оксидов по границам зерен, повышают порог хладноломкости и понижают сопротивление хрупкому разрушению. Неметаллические включения (оксиды, нитриды, частицы шлаков и т. п.), являясь концентраторами напряжений, могут сильно понизить, если они присутствуют в значительных количествах или располагаются в виде скоплений, предел выносливости и вязкость разрушения.

Очень вредным является растворенный в стали водород, который сильно охрупчивает сталь. Поглощенный при выплавке стали водород не только охрупчивает сталь, но приводит к образованию в катаных заготовках и крупных поковках флокенов. Флокены представляют собой очень тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен — хлопьев серебристого цвета. Флокены резко ухудшают свойства стали. Металл, имеющий флокены, нельзя использовать в промышленности.

Влияние водорода при сварке проявляется в образовании холодных трещин в наплавленном и основном металле.

Широко применяемые в последние годы выплавка или разливка в вакууме значительно уменьшают содержание водорода и других газов в стали.

Молибден, ванадий, вольфрам, хром повышают прочность и вязкость сталей, ухудшая их обрабатываемость. Эти элементы образуют твердые растворы с железом и карбиды различного состава и твердости, как следствие возрастает истирающая способность материала.

Хром значительно снижает теплопроводность стали.

Никель способствует упрочнению стали и снижает обрабатываемость резанием.

 



2016-01-05 728 Обсуждений (0)
Химический состав: Сталь 20ХФ 0.00 из 5.00 0 оценок









Обсуждение в статье: Химический состав: Сталь 20ХФ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (728)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)