Зубчатые передачи с зацеплением M.Л. Новикова
В этом зацеплении профиль зубьев выполняется не по эвольвенте, а по дуге окружности или по кривой, близкой к ней При зацеплении выпуклые зубья одного из колес контактируют с вогнутыми зубьями другого. Поэтому площадь соприкосновения одного зуба с другим в передаче Новикова значительно больше, чем в эвольвентных передачах. Касание сопряженных профилей теоретически происходит в точке, поэтому данный вид зацепления называют точечным. При одинаковых с эвольвентным зацеплением параметрах точечная система зацепления с круговым профилем зуба обеспечивает увеличение контактной прочности, что в свою очередь позволяет повысить нагрузочную способность передачи в 2...3 раза по сравнению с эвольвентной. Взаимодействие зубьев в сравниваемых передачах также различно: в эвольвентном зацеплении преобладает скольжение, а в зацеплении Новикова — качение. Это создает благоприятные условия для увеличения масляного слоя между зубьями, уменьшения потерь на трение и увеличения сопротивления заеданию. Основные параметры зубчатых колес: 1. Делительными окружностями пары зубчатых колес называются соприкасающиеся окружности, катящиеся одна по другой без скольжения. Эти окружности, находясь в зацеплении (в передаче), являются сопряженными. На чертежах диаметр делительной окружности обозначают буквой d. 2. Окружной шаг зубьев Рt — расстояние (мм) между одноименными профильными поверхностями соседних зубьев. Шаг зубьев, как нетрудно представить, равен делительной окружности, разделенной на число зубьев z. 3. Длина делительной окружности. Модуль. Длину делительной окружности можно выразить через диаметр и число зубьев: Пd = Pt • r. Отсюда диаметр делительной окружности d = (Рt • z)/П. Отношение Pt/П называется модулем зубчатого зацепления и обозначается буквой т. Тогда диаметр делительной окружности можно выразить через модуль и число зубьев d = m • z. Отсюда m = d/z. Значение модулей для всех передач — величина стандартизированная. Для понимания зависимости между величинами Рt т и d приведена схема на рис. 178, II, где условно показано размещение всех зубьев 2 колеса по диаметру ее делительной окружности в виде зубчатой рейки. 4. Высота делительной головки зуба ha — расстояние между делительной окружностью колеса и окружностью вершин зубьев. 5. Высота делительной ножки зуба hf — расстояние между делительной окружностью колеса и окружностью впадин. 6. Высота зуба h — расстояние между окружностями вершин зубьев и впадин цилиндрического зубчатого колеса h = ha + hf.. 7. Диаметр окружности вершин зубьев da — диаметр окружности, ограничивающей вершины головок зубьев. 8. Диаметр окружности впадин зубьев df — диаметр окружности, проходящей через основания впадин зубьев. При конструировании механизма конструктор рассчитывает величину модуля т для зубчатой передачи и, округлив, подбирает модуль по таблице стандартизированных величин. Затем он определяет величины остальных геометрических элементов зубчатого колеса. 12)Разъемные соединения деталей машин Соединения деталей машин и механизмов, допускающие многократную разборку и сборку без повреждения соединяемых деталей и соединительных элементов называются разъемными соединениями. Разъемные соединения в свою очередь делятся на подвижные и неподвижные. С помощью подвижных соединений можно обеспечить определенное перемещение одних деталей относительно других. К ним относятся различные опоры и направляющие. К разъемным соединениям относят резьбовые, штифтовые, шпоночные, шлицевые и некоторые другие соединения. Выбор типа соединения зависит от предъявляемых к нему требований: конструктивных, технологических и экономических. виды : Резьбовые соединения Резьбовыми называют соединения составных частей изделия с применением деталей, имеющих резьбу. Они наиболее распространены в приборо- и машиностроении. Резьбовые соединения бывают двух типов: соединения с помощью специальных резьбовых крепежных деталей (болтов, винтов, шпилек, гаек) и соединения свинчиванием соединяемых деталей, т.е. резьбы, нанесенной непосредственно на соединяемые детали.Основными крепежными деталями резьбовых соединений являются болты, винты, шпильки, гайки, шайбы и стопорные устройства, предохраняющие гайки от самоотвинчивания. Винты – цилиндрические стрежни с головкой на одном конце и резьбой – на другом. Винт ввертывается в резьбовое отверстие одной из скрепляемых деталей (рис. 1, б), головки винтов могут иметь различную форму (цилиндрическую, полукруглую и др.). Шпилька – цилиндрический стержень с резьбой на обоих концах, одним концом она ввертывается в одну из скрепляемых деталей, а на другой ее конец навертывается гайка (рис. 1, в). Гайки служат для соединения скрепляемых с помощью болта или шпильки деталей. Как и головки винтов, гайки могут иметь разнообразную форму.
Шпоночные соединения Шпоночные соединения служат для передачи вращающего (крутящего) момента от вала к ступице насаженной на него детали (зубчатого колеса, шкива, муфты и др.) или наоборот – от ступицы к валу. Шпоночные соединения осуществляют с помощью вспомогательных деталей – шпонок, устанавливаемых в пазах между валом и ступицей.Достоинствами шпоночных соединений являются простота, надежность конструкции, невысокая стоимость, удобство сборки и разборки. Недостатки шпоночных соединений – ослабление вала и ступицы шпоночными пазами, неустойчивость положения шпонки в пазах (выворачивание шпонки) и трудность обеспечения взаимозаменяемости, повышенные требования к точности изготовления, отсутствие фиксации деталей в осевом направлении. Шпонки могут применять в качестве направляющих, обеспечивающих легкое перемещение деталей вдоль вала.
Шлицевые соединения Шлицевые соединения служат для передачи вращающего момента между валами и установленными на них деталями. По форме поперечного сечения шлицев различают прямобочные (рис. 4, а), эвольвентные (рис. 4, б) и треугольные (рис. 4, в) шлицевые соединения. Наибольшее распространение получили прямобочные шлицевые соединения, выполненные с четным числом шлицев (6, 8, 10). Центрирование возможно по наружному диаметру D, по внутреннему d и боковым поверхностям. Эвольвентное шлицевое соединение (см. рис.) отличается от прямобочного повышенной точностью центрирования и прочностью. Центрирование осуществляют по боковым сторонам, реже – по наружному диаметру. Соединение с треугольными шлицами (см. рис.) применяют для неподвижных соединений при небольших нагрузках и тонкостенных конструкциях. Число шлицев z = 20 … 70, углы впадин вала равны 60, 72 и 90°. 16)Классификация неразъемных соединений Неразъемным называют такое соединение деталей и узлов, разборка которого невозможна без повреждения деталей. Часто неразъемные соединения используют для получения деталей сложной формы и геометрии из простых дешевых элементов. виды Сварные соединения Сваркой называют процесс соединения металлических и пластмассовых деталей путем установления межатомных связей между соединяемыми частями при местном нагреве, пластической деформации или одновременном действии того и другого. Соединения пайкой Пайкой называют процесс соединения металлических или металлизированных деталей с помощью дополнительного связующего материала – припоя, температура плавления которого ниже температуры плавления материала соединяемых деталей. Заклепочные (клепаные) соединения Заклепочные (клепаные) соединения выполняют с помощью специальных крепежных деталей – заклепок или непосредственным расклепыванием цапф деталей. Заклепка представляет собой цилиндрический стержень с двумя головками, одна из которых, называемая закладной, выполнена заранее, а вторая, замыкающая, получается в процессе сборки под ударами инструмента. Соединяемые детали при этом сильно сжимаются Клеевые соединения Склеиванием называют соединение деталей тонким слоем быстротвердеющего раствора – клея. Соединения запрессовкой Соединения запрессовкой получают путем создания гарантированного натяга между охватываемой и охватывающей поверхностями при сборке. После сборки вследствие упругих и пластических деформаций на поверхности контакта возникает удельное давление и соответствующие ему силы трения, препятствующие взаимному смещению деталей. 17)Вал — деталь машин, предназначенная для передачи крутящего момента вдоль своей осевой линии. В большинстве случаев валы поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др.). Некоторые валы (например, гибкие, карданные, торсионные) не поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем. Вал, распределяющий механическую энергию по отдельным рабочим машинам, называется трансмиссионным. В отдельных случаях валы изготовляют как одно целое с цилиндрической или конической шестерней (вал—шестерня) или с червяком (вал — червяк). По форме геометрической оси валы бывают прямые, коленчатые и гибкие (с изменяемой формой оси). Простейшие прямые валы имеют форму тел вращения. На рисунке показаны гладкий (а) и ступенчатый (б) прямые валы. Ступенчатые валы, являются наиболее распространенными. Для уменьшения массы или для размещения внутри других деталей валы иногда делают с каналом по оси; в отличие от сплошных такие валы называют полыми. 18)Подши́пник (от «под шип») — сборочный узел, являющийся частью опоры или упора и поддерживающий вал, ось или иную подвижную конструкцию с заданной жёсткостью. Фиксирует положение в пространстве, обеспечивает вращение, качение или линейное перемещение (для линейных подшипников) с наименьшимсопротивлением, воспринимает и передаёт нагрузку от подвижного узла на другие части конструкции[1][2]. Опора с упорным подшипником называется подпятником. Основные параметры подшипников[3]: Максимальная динамическая и статическая нагрузка (радиальная и осевая). Максимальная скорость (оборотов в минуту для радиальных подшипников). Посадочные размеры. Класс точности подшипников. Требования к смазке. Ресурс подшипника до появления признаков усталости, в оборотах. Шумы подшипника Вибрации подшипника Классификация Классификация подшипников качения осуществляется на основе следующих признаков: По виду тел качения Шариковые, Роликовые (игольчатые, если ролики тонкие и длинные); По типу воспринимаемой нагрузки Радиальные (нагрузка вдоль оси вала не допускается). Радиально-упорные, упорно-радиальные. Воспринимают нагрузки как вдоль, так и поперек оси вала. Часто нагрузка вдоль оси только одного направления. Упорные (нагрузка поперек оси вала не допускается). Линейные. Обеспечивают подвижность вдоль оси, вращение вокруг оси не нормируется или невозможно. Встречаются рельсовые, телескопические или вальные линейные подшипники. Шариковые винтовые передачи. Обеспечивают сопряжение винт-гайка через тела качения. По числу рядов тел качения Однорядные, Двухрядные, Многорядные; По способности компенсировать несоосность вала и втулки[4] Самоустанавливающиеся. Несамоустанавливающиеся. Классификация В основу классификации положен анализ режимов работы подшипников по диаграмме Герси-Штрибека. Подшипники скольжения разделяют: в зависимости от формы подшипникового отверстия: одно- или многоповерхностные, со смещением поверхностей (по направлению вращения) или без (для сохранения возможности обратного вращения), со смещением или без смещения центра (для конечной установки валов после монтажа); по направлению восприятия нагрузки: радиальные осевые (упорные, подпятники), радиально-упорные; по конструкции: неразъемные (втулочные; в основном, для I-1), разъемные (состоящие из корпуса и крышки; в основном, для всех, кроме I-1), встроенные (рамовые, составляющие одно целое с картером, рамой или станиной машины); по количеству масляных клапанов: с одним клапаном, с несколькими клапанами; по возможности регулирования: нерегулируемые, регулируемые. 19)Муфта – устройство, предназначенное для соединения концов валов или для соединения валов с расположенными на них деталями. Основное назначение: передача вращающего момента без изменения его модуля и направления. Классификация муфт
По характеру соединения валов муфты подразделяют на неуправляемые (постоянные), управляемые и самоуправляемые (автоматические). Виды муфт Муфта глухая образует жесткое и неподвижное соединение валов. Они не компенсируют ошибки изготовления и монтажа, требуют точной центровки валов. Применяются обычно глухие муфты для тихоходных валов. а) б) Муфта фланцевая – наиболее распространенная (рис. 7.2), состоит из двух полумуфт 2, соединенных болтами 1. Болты ставят через один: с зазором (вариант I) и без зазора под развертку (вариант II). Центрирование полумуфт в этом случае осуществляют болтами, установленными без зазора, которые рассчитывают на срез. Установка болтов без зазора позволяет получить муфты меньших габаритов и поэтому более распространена. Фланцевые муфты применяют для соединения валов диаметром до 200 мм и более. Достоинствами таких муфт являются простота конструкции и сравнительно небольшие габариты. Жесткая компенсирующая муфта. За счет подвижности деталей такие муфты компенсируют радиальные, угловые и осевые смещения валов, вызванные неточностями их изготовления, монтажа и упругими деформациями. Это позволяет уменьшить нагрузки на валы и подшипники. Недостаток жестких компенсирующих муфт – отсутствие упругодемпфирующих элементов, смягчающих толчки и удары. Наибольшее распространение получили кулачково-дисковая и зубчатая. Кулачково-дисковая муфта (рис. 7.3) состоит из двух полумуфт 1 и 3, соединенных промежуточным диском 2. При работе диск перемещается по пазам полyмуфт, и тем самым компенсируются несоосность соединяемых валов (радиальные смещения – до 0,04d, угловые – до 30'). Скольжение выступов в пазах сопровождается их износом. Интенсивность износа возрастает с увеличением несоосности и частоты вращения. Для уменьшения износа поверхности трения муфты периодически смазывают и не допускают на них больших напряжений смятия. Из условия износостойкости кулачково-дисковых мyфт рассчитывают давление на боковых поверхностях выступов и пазов: Детали кулачково-дисковых муфт изготовляют из сталей Ст5 (поковка) или 25Л (литье). Для тяжелонагруженных муфт применяют легированные стали типа 15Х, 20Х с цементацией рабочих поверхностей. Зубчатая муфта (рис. 7.4, а) состоит из двух полумуфт 1 и 3 с наружными зубьями эвольвентного профиля и разъемной обоймы 2 с внутренними зубьями. Передача вращающего момента осуществляется большим числом одновременно работающих зубьев, что обеспечивает высокую нагрузочную способность и малые габариты муфты. Для компенсации смещений деталей предусматривают торцевой зазор δ. Для ослабления вредного влияния кромочного контакта применяют зубья бочкообразной формы (рис. 7.4, б), а соединение выполнено с увеличенными зазорами. Зубчатые муфты допускают угловое смещение валов (рис. 7.4, в) Δα max = 1,5°, радиальное Δr = 0,2…0,6 мм, осевое (на рисунке не показано) – 1…8 мм. Детали зубчатых муфт изготовляют из углеродистых сталей типа 45, 40Х, 45Л коваными или литыми. Для повышения износостойкости зубья полумуфт подвергают термической обработке до твердости не ниже 40НRC, а зубья обойм – не ниже 35HRC. Упругие компенсирующие муфты применяются не только для компенсации смещения валов, но и для снижения динамичности нагрузок и амортизации колебаний, возникающих при работе передач машин. Муфта упругая втулочно-пальцевая (рис. 7.5) состоит из двух полумуфт 1, соединенных пальцами 2, на которые для смягчения ударов надеты гофрированные резиновые втулки. Такие муфты в силу простоты конструкции получили широкое применение в приводах от электродвигателей для валов диаметрами 9…160 мм при вращающих моментах 6,3…16000 Нм. Толщина резиновых втулок невелика, и поэтому амортизирующая способность муфты незначительна. Они допускают радиальное смещение валов до 0,6 мм, продольное – до 5 мм, угловое – до 1°. Муфта со змеевидными пружинами (рис. 7.6) состоит из двух полyмуфт 1 с зубьями специальной формы, между которыми свободно расположены секции змеевидной пружины 3 прямоугольного сечения. Кожух 2, состоящий из двух половин, служит резервуаром для пластичного смазочного материала и предохраняет пружину от выпадения. Муфта используется для передачи больших вращающих моментов, обладает хорошими эксплуатационными качествами, имеет небольшие габариты, но сравнительно дорогостоящая. Управляемые (сцепные) муфты Кулачковая муфта (рис. 7.7) состоит из двух полумуфт 1 и 2, имеющих на сцепляемых торцах выступы – кулачки. При включении муфты кулачки одной полумуфты входят во впадины другой, создавая жесткое соединение. Включение кулачковой муфты во избежание ударов производят при остановленном двигателе или с малыми скоростями (до 1 м/с). Фрикционные сцепные муфты передают вращающий момент между полумуфтами за счет сил трения на рабочих поверхностях (рис. 7.8). В начальный период касания полумуфт происходит относительное проскальзывание их рабочих поверхностей (смазанных или сухих), и тем самым обеспечивается плавность включения муфты. При установившемся движении проскальзывание не происходит, а при перегрузке муфта пробуксовывает, что предохраняет машину от поломок. Самоуправляемые автоматические муфты выполняют автоматически одну из следующих функций: ограничение передаваемой нагрузки – предохранительные муфты; передачу нагрузки (момента) только в одном направлении – муфта обгона; включение и выключение при заданной скорости – центробежные муфты. Предохранительную муфту срабатывают, когда вращающий момент превышает некоторую установленную величину. При достижении вращающим моментом предельной величины под действием осевых усилий, обусловленных формой впадин полумуфты, шарики смещаются в осевом направлении (преодолевая сопротивление пружины) и размыкают муфту с последующим прощелкиванием. Муфта обгона (мyфты свободного хода) предназначены для передачи вращающего момента только в одном направлении. Наибольшее распространение получили фрикционные обгонные мyфты, передающие вращающий момент за счет заклинивания между полумуфтами промежуточных тел (в основном роликов). Такие муфты бесшумны, компактны, могут работать при высокой частоте вращения. Их изготовляют для вaлов диаметром 10…90 мм и передачи момента до 750…800 Нм. Пусковую (центробежную) муфту используют для плавного пуска приводов грузоподъемных машин конвейеров и т.п. Они позволяют электродвигателю легко разогнаться и по достижении им определенной скорости начать плавный разгон рабочего органа. Одновременно пусковые мyфты выполняют и предохранительные функции.
Назначение и роль смазочных материалов (смазок и масел) в технике[править | править вики-текст] Смазочные материалы широко применяются в современной технике, с целью уменьшения трения в движущихся механизмах (двигатели, подшипники, редукторы, и.т д), и с целью уменьшения трения при механической обработке конструкционных и других материалов на станках (точение, фрезерование, шлифование и т. д.). В зависимости от назначения и условий работы смазочных материалов (смазок), они бывают твёрдыми (графит, дисульфид молибдена, иодид кадмия, диселенид вольфрама, нитрид бора гексагональный и т. д.), полутвёрдыми, полужидкими (расплавленные металлы, солидолы, консталины и др), жидкими (автомобильные и другие машинные масла), газообразными (углекислый газ, азот, инертные газы). Виды и типы смазочных материалов[править | править вики-текст] В зависимости от характеристик материалов кинематической пары, для смазки могут быть использованы жидкие (например, минеральные, синтетические и полусинтетические масла) и твёрдые (фторопласт, графит, дисульфид молибдена) вещества. По материалу основы смазки делятся на: минеральные — в их основе лежат углеводороды, продукты переработки нефти синтетические — получаются путем синтеза из органического и неорганического (например, силиконовые смазки) сырья органические — имеют растительное происхождение (например: касторовое масло, пальмовое масло) Смазки могут иметь комбинированную основу. Классификация[править | править вики-текст] Все жидкие смазочные материалы делятся на классы по вязкости (классификация SAE для моторных и трансмиссионных масел, классификация ISO VG (viscosity grade) для индустриальных масел), и на группы по уровню эксплуатационных свойств (классификации API, ACEA для моторных и трансмиссионных масел, классификация ISO для индустриальных масел. По агрегатному состоянию делятся на: твёрдые, полутвёрдые, полужидкие, жидкие, газообразные. По назначению: Моторные масла — применяемые в двигателях внутреннего сгорания. Трансмиссионные и редукторные масла — применяемые в различных зубчатых передачах и коробках передач. Гидравлические масла — применяемые в качестве рабочей жидкости в гидравлических системах. Пищевые масла и жидкости — применяемые в оборудовании для производства пищи и упаковки, где возможен риск загрязнения продуктов смазывающим веществом. Индустриальные масла (текстильные, для прокатных станов, закалочные, электроизоляционные, теплоносители и многие другие) — применяемые в самых разнообразных машинах и механизмах с целью смазывания, консервации, уплотнения, охлаждения, выноса отходов обработки и др. Электропроводящие смазки (пасты) — применяемые для защиты электрических контактов от коррозии и снижения переходного сопротивления контактов. Электропроводящие смазки изготавливаются консистентными. Консистентные (пластичные) смазки — применяемые в тех узлах, в которых конструктивно невозможно применение жидких смазочных материалов. 21 Назначение и виды редукторов Редуктор представляет собой сложный механизм. Он состоит из червячных или зубчатых передач благодаря которым происходит вращение вала рабочего механизма. Конструктивно он состоит из корпуса, в котором размещены элементы, передающие движение. Это зубчатые колеса, валы и другие. Иногда в корпусе редуктора могут находиться дополнительные устройства, обеспечивающие смазку цепей или охлаждение нужных деталей и узлов. Производители выпускают большое количество редукторов, отличающихся конструкцией и формой. · редуктор цилиндрический одноступенчатый. В нем оси ведомого и ведущего вала находятся параллельно; · конический редуктор, в котором происходит пересечение осей валов; · червячный редуктор. В них оси в пространстве перекрещиваются; · комбинированные механизмы, сочетающие в себе зубчатые и червячные передачи. В зависимости от числа передач может быть редуктор одноступенчатый или многоступенчатый. Это устройство широко используется человеком во всех сферах его деятельности. Он включен в состав привода различных механизмов. С его помощью снижается угловая скорость выходного вала. В некоторых случаях угловая скорость должна быть разной. Для того чтобы это произошло, в корпусе размещают специальный механизм переключения и несколько пар зубчатых коле, обладающих различными передаточными числами. такой механизм известен всем под названием
Популярное: Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Почему стероиды повышают давление?: Основных причин три... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1072)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |