Структуры оснований, наиболее часто встречающихся в составе ДНК
Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого являетсянуклеотид. Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5'-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза)[11]. Пример нуклеотида — аденозинмонофосфат, у которого основанием, присоединённым к фосфату и рибозе, является аденин (показан на рисунке). Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины(цитозин [C] и тимин [T]) — шестичленным гетероциклом. В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований — урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК[13]. Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК[14]. Двойная спираль В зависимости от концентрации ионов и нуклеотидного состава молекулы, двойная спираль ДНК в живых организмах существует в разных формах. На рисунке представлены формы A, B и Z (слева направо) Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу). Образование связей между основаниями Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется комплементарным. Пурины комплементарны пиримидинам (то есть способны к образованию водородных связей с ними): аденин образует связи только с тимином, а цитозин — с гуанином. В двойной спирали цепочки также связаны с помощью гидрофобных взаимодействий истэкинга, которые не зависят от последовательности оснований ДНК[19]. Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах. Так как водородные связи нековалентны, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов (хеликазы) или при высокой температуре[20]. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ — тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки[21]. Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например ТАТА последовательность в бактериальных промоторах, обычно содержат большое количество А и Т. 22. Генетика как наука. Основные понятия генетики: наследственность, изменчивость; аллельные гены, гомо- и гетерозиготы; признаки - доминантные, рецессивные, альтернативные; генотип, фенотип; менделирующие признаки. Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году. Наследственность — свойство организмов передавать свои признаки от одного поколения к другому. Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида. Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее. Фенотип — совокупность всех внешних и внутренних признаков организма. Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака. Генотип — совокупность генов организма. Локус — местоположение гена в хромосоме. Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом. Гомозигота — организм, имеющий аллельные гены одной молекулярной формы. Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным. Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным. Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным. · признак – это любая особенность организма, по которой можно различить 2 особи (окраска цветков, плодов, скорость созревания, способность или неспособность к синтезу какого-либо вещества и т. д);
· альтернативные признаки – это противоположные или взаимоисключающие признаки;
· аллельные гены или аллели – это гены, которые располагаются в идентичных локусах гомологичных хромосом и отвечают за проявление у особей альтернативных признаков, их обозначают одинаковыми буквами, доминантный признак – заглавной (А), рецессивный – строчной (а);
· доминантный признак – это альтернативный признак (и ген, обуславливающий его проявление), который проявляется у гибридов первого поколения, этот признак проявляется в гомо- и гетерозиготном состоянии;
· гомозиготный организм (гомозигота) – это организм, который образует один тип гамет и не даёт расщепления при скрещивании с таким же по генотипу организмом (может быть доминантным (АА) или рецессивным (аа);
· гетерозиготный организм (гетерозигота) – это организм образует два типа гамет и даёт расщепление при скрещивании с таким же по генотипу организмом;
· генотип – это совокупность генов организма (каждый ген испытывает на себе воздействие других генов и сам оказывает влияние на них, поэтому один и тот же ген в разных генотипах может проявляться по-разному);
· фенотип – это совокупность всех свойств и признаков организма (этот термин можно употреблять и по отношению к одному альтернативному признаку), фенотипические признаки: Гибридологический метод, его сущность. Виды скрещиваний - моно- и полигибридное, анализирующее. Их сущность. 1) для скрещивания выбирают родительские формы, четко различающиеся по одной, двум или трем парам контрастных, альтернативных признаков. Например, у одного растения окраска семядолей зрелых семян желтая, у другого — зеленая, форма семян — круглая или морщинистая и т. д. Скрещивание, в котором родители отличаются друг от друга одним признаком, в последующем получило название моногибридного, двумя — дигиб-ридного, многими признаками — полигибридного; 2) выбранные для скрещивания родительские формы должны быть генетически чистыми. После двухлетнего предварительного испытания Мендель отобрал 22 сорта гороха, которые за время опытов ежегодно высевали и все без исключения сохраняли свою константность; 3) Мендель ввел точный математический учет наследования каждого отдельного признака. Наблюдению подвергают все без исключения растения в каждом отдельном поколении. Как правило, для определения наследования признака используют гибриды первого, второго и иногда третьего поколений; 4) гибриды и их потомки в каждом из следующих друг за другом поколений не должны обнаруживать заметных нарушений в плодовитости; 5) Мендель ввел буквенное обозначение наследственных задатков (генов) различных признаков. Например, А — ген доминантного признака, а — ген рецессивного признака. Одна из главных причин, обеспечивших успех в работе Менделя, — удачный выбор объекта исследования. Горох — однолетнее растение, имеет много сортов с четко различающимися признаками, легко культивируется, строгий самоопылитель, строение его цветка таково, что почти невозможен занос чужой пыльцы, но при необходимости можно производить искусственное опыление. Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных;цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций. Основной метод генетики – гибридологический (скрещивание определенных орагнизмов и анализ их потомства, этот метод использовал Г.Мендель). Гибридологический метод не подходит для человека по морально-этическим соображениям, а так же из-за малого количества детей и позднего полового созревания. Поэтому для изучения генетики человека применяют косвенные методы 3) Законы Менделя, основанные на моногибридном скрещивании. Эксперимент расписать. Единообразие первого поколения. Первый закон Менделя. В том случае, когда родительские организмы отличаются друг от друга по одному изучаемому признаку, скрещивание называют моногибридным. Г. Мендель проводил опыты с горохом. Среди большого количества сортов он выбрал для первого эксперимента два, отличающиеся по одному признаку. Семена одного сорта гороха были желтые, а другого — зеленые. Известно, что горох, как правило, размножается путем самоопыления и поэтому в пределах сорта нет изменчивости по окраске семян. Используя это свойство гороха, Г. Мендель произвел искусственное опыление, скрестив сорта, отличающиеся цветом семян (желтым и зеленым). Независимо от того, к какому сорту принадлежали материнские растения, гибридные семена оказались только желтыми. Следовательно, у гибридов первого поколения проявился признак только одного родителя. Такие признаки Г. Мендель назвал доминантными. Признаки, не проявляющиеся у гибридов первого поколения, он назвал рецессивными. В опытах с горохом признак желтой окраски семян доминировал над зеленой окраской. Таким образом, в потомстве гибридов Г. Мендель обнаружил единообразие первого поколения, т. е. все гибридные семена имели одинаковую окраску. В опытах, где скрещивающиеся сорта отличались и по другим признакам, были получены такие же результаты: единообразие первого поколения и доминирование одного признака над другим. В дальнейшем это явление получило название первого закона Менделя. Впоследствии генетики, изучая наследование разнообразных признаков у растений, животных, грибов, обнаружили очень широкое распространение явления доминирования. (А — желтый цвет горошин, а — зеленый цвет горошин)
Расщепление признаков у гибридов второго поколения. Второй закон Менделя. Из гибридных семян гороха Г. Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он получил 2001 зеленое и 6022 желтых семян. Таким образом, 3/4 семян гибридов второго поколения имели желтую окраску и 1/4 — зеленую. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось равным 3:1. Такое явление он называл расщеплением признаков. Сходные результаты во втором поколении дали многочисленные опыты по гибридологическому анализу других пар признаков. Основываясь на полученных результатах, Г. Мендель сформулировал свой второй закон — закон расщепления. В потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения несет рецессивный признак, три четверти — доминантный.
Популярное: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1647)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |