Мегаобучалка Главная | О нас | Обратная связь

Лабораторная работа 2-8





Теплопроводность газов

Цель работы: изучить процессы переноса в воздухе, рассмотреть теоретические аспекты явления теплопроводности.

Задача работы: освоить методику измерений коэффициента теплопроводности методом цилиндрического слоя.

Теория

Беспорядочные движения частиц газа обусловливают процессы диффузии, теплопроводности, внутреннего трения и т.д. Все эти явления имеют много общего и объединяются общим названием явления переноса. В настоящей работе изучается явление теплопроводности в воздухе.

Рис.2-8.1
Q
Z

 

Известно три способа передачи тепла: конвекция, теплопроводность, излучение. В первых двух случаях в процессе передачи тепла участвует вещество. Процесс конвекции обусловлен разностью удельных весов нагретых и холодных слоев газа. Теплопроводность - процесс переноса тепла, отличительнойчертой которого является атомно-молекулярный характер передачи энергии. Сталкиваясь, молекулы передают друг другу “эстафетным способом” кинетическую энергию. Процесс теплопроводности наблюдается в системе при наличии градиента температуры.

Предположим, что в некотором объеме газа (рис. 2-8.1), в положительном направлении оси Z существует градиент температуры . Тогда в противоположном направлении, в области более низких температур, будет наблюдаться поток тепла, который по закону Фурье пропорционален градиенту температуры:

, (2-8.1)

где - величина площадки, через которую определяется поток тепла, c- коэффициент теплопроводности газов. Знак “минус” подчеркивает, что поток энергии и вектор градиента температуры направлены в противоположные стороны. Величина коэффициента теплопроводности согласно молекулярно-кинетической теории определяется как

, (2-8.2)

где - плотность газа, - средняя скорость теплового движения, λ-средняя длина свободного пробега, - удельная теплоемкость газа при постоянном объеме. Если в уравнении (2-8.1) градиент температуры - принять равным 1, то размерность коэффициента теплопроводности будет [вт/мК]. Из выражения (2-8.2) следует, что c не зависит от давления, так как плотность газа пропорциональна, а длина свободного пробега обратно-пропорциональна давлению газа  [1]. Независимость коэффициента теплопроводности от давления осуществляется не всегда. Так, для давлений, при которых длина свободного пробега молекул становится соизмерима с размерами сосуда, содержащего газ, или больше этой величины, т.е. l, эта зависимость нарушается. В этом случае столкновения между молекулами самого газа перестают играть главную роль, существенными становятся только столкновения молекул со стенками сосуда, в котором заключен газ. Молекула, столкнувшись с горячей стенкой, получает от нее кинетическую энергию и переносит ее к более холодной стенке, не испытывая промежуточных столкновений. Ясно, что в таком случае перенос тепла будет происходить тем медленнее, чем меньше носителей тепла, т.е., чем больше разряжен газ. Такой перенос формально может быть описан прежней формулой 4, но величину λ следует заменить величиной l- расстоянием между стенками сосуда [2].Процесс передачи тепла в этом случае носит название «теплопередача».



Для воздуха при 200С длина свободного пробега молекул выражается эмпирической формулой [3]:

λ =

где Р- давление газа. Пользуясь этим соотношением, можно оценить то давление, при котором длина свободного пробега становится сравнима с размерами эмпирического объема.

Таким образом, независимость коэффициента теплопроводности от плотности газа имеет место лишь до тех пор, пока длина свободного пробегамала по сравнению с размерами сосуда. Когда λ и l становятся соизмеримы друг с другом, при уменьшении плотности газа коэффициент c начинает убывать. Это убывание идет по линейному закону: коэффициент c становится пропорционален плотности газа, при низком давлении теплопроводность очень мала. На этом принципе основано устройство сосудов Дюара, в которых теплоизоляция между стенками сосудов достигается с помощью вакуума.

В тоже время величина c при любом давлении зависит от температуры, так как средняя скорость молекул, входящая в уравнение (2-8.2), зависит от температуры .

Постановка задачи

Для изучения явления теплопроводности рассмотрим систему, состоящую из двух цилиндров с радиусами r1 и r2 (рис.2-8.2,а). Температуры цилиндров соответственно равны Т1 и Т2 иподдерживаются с помощью внешнего источника тепла постоянными. Внутренний цилиндр может быть, в частности, просто проволокой, по которой пропускается электрический ток, и она служит нагревателем, т.е. Т12 (рис. 2-8.2,б). Поток тепла направлен от более нагретой внутренней поверхности к внешней. В случае стационарного потока распределение температур между цилиндрами будет постоянно во времени.

Используя соотношение (2-8.1), получим, что поток тепла Q в единицу времени через цилиндрическую поверхность высотой и радиусом rвыражается формулой

. (2-8.1)

Интегрируя это выражение при значениях температур внутреннего и внешнего цилиндров Т1 и Т2 , получим

. (2-8.2)

r2
r1
r
а
r1
r
r2
б
Рис. 2-8.2. Система из двух цилиндров

В стационарном состоянии поток тепла Q можно принять равным мощности нагревателя W, и тогда коэффициент теплопроводности имеет вид

(2-8.3)

На практике все температуры мы определяем по шкале Цельсия, которая с абсолютной температурой связана соотношением t=(T-273)0C. Следовательно, разность температур Т1 2 в выражении (2-8.3) может быть подставлена в (2-8.3) в градусах Цельсия t1-t2 (как она и определяется в эксперименте).

Таким образом, для определения величины коэффициента теплопроводности надо определить: количество тепла, переносимого от внутренней поверхности к внешней, разность температур между внутренним и внешним цилиндром, размеры системы. Все эти величины находятся из эксперимента.

Следует иметь в виду, что полученные значения будут несколько завышены, так как в процессе теплопроводности определенную роль могут играть процессы излучения и конвекции. Влияние конвекции на полученные экспериментальные результаты можно оценить, определяя коэффициент теплопроводности при разных давлениях воздуха. Известно, что с увеличением давления интенсивность конвекционного переноса тепла растет. Если в результате эксперимента обнаружится тенденция роста коэффициента теплопроводности с увеличением давления, то ее можно объяснить наличием конвективных потоков. Роль теплового излучения может быть оценена с помощью закона Стефана – Больцмана, по которому с единицы поверхности абсолютно черного тела излучается энергия W= , гдеТ – абсолютная температура тела, а . Полная энергия, передаваемая при излучении от одного цилиндра к другому, не превышает

, (2-8.4)

где S – площадь поверхности внутреннего цилиндра.

Описание установки

Для измерения коэффициента теплопроводности воздуха в данной работе используется лабораторная установка ФПТ 1-3. Установка представляет собой конструкцию настольного типа, состоящую из основных частей: 1) приборный блок, 2) рабочий элемент.

Приборный блок представляет собой единый конструктив со съемной крышкой, съемными лицевыми панелями. Внутри блока размещена печатная плата с радиоэлементами, органы подключения, регулирования, трансформаторы.

Лицевая панель блока условно разделена на три функциональных узла:

1. «НАПРЯЖЕНИЕ»осуществляет управление работой цифрового контролера для измерения напряжения.

2. «НАГРЕВ»осуществляет включение и регулирование нагрева нити.

3. «СЕТЬ» осуществляет подключение установки к сети питающего напряжения.

Рабочий элемент представляет собой коробчатый конструктив, укрепленный на стойке. Несущими узлами этого блока являются панель и кронштейн, скрепленные между собой винтами.

Между выступающими частями панели в текстолитовых фланцах зажата стеклянная трубка. По оси трубки натянута вольфрамовая нить. Между панелью и кронштейном размещен вентилятор для охлаждения трубки. На панели установлены цифровой контроллер для измерения температуры и цифровой контроллер для измерения напряжения.

В лабораторной установке тепловой поток создается путем нагрева нити постоянным током и определяется по формуле

, (2-8.5)

где - падение напряжения на нити;

- падение напряжения на эталонном резисторе;

- сопротивление эталонного резистора ( ).

Разность температур нити и трубки: , где – температура нити, - температура трубки, равна температуре окружающего воздуха.

Температура трубки в процессе эксперимента принимается постоянной, т.к. ее поверхность обдувается с помощью вентилятора потоком воздуха.

Температура нити тем выше, чем больше протекающий по ней ток. С помощью температуры меняется сопротивление нити, измеряемое методом сравнения падения напряжений на нити и на эталонном резисторе.

Разность температур нити и трубки определяется по формуле

, (2-8.6)

где - падение напряжения на нити в нагретом состоянии;

- падение напряжения на нити при температуре окружающего воздуха (при рабочем токе не более 10мА);

- падение напряжения на эталонном резисторе при нагреве нити;

- падение напряжения на эталонном резисторе при температуре окружающего воздуха;

- температурный коэффициент сопротивления ;

t – температура воздуха.





Читайте также:


Рекомендуемые страницы:


Читайте также:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...

©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (648)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)