Перемещение и скорость
1) В верхнем левом углу расположена стрелка. Нажмите на стрелку, перейдите к лабораторной работе № 1.2. Перед Вами график зависимости координаты от времени движения автомобиля, а так же автомобиль. 2) Нажмите «Старт». Автомобиль начинает двигаться. Под графиком приведены значения перемещения и скорости на каждом участке движения автомобиля. 3) Вид графика может меняться. Подведите стрелку мыши к той точке графика, которую Вы хотите передвинуть. Нажмите левую кнопку мыши и перенесите точку туда, куда необходимо. Отпустите кнопку. Нажмите «Старт», пронаблюдайте движения автомобиля. 4) Повторите моделирование необходимое количество раз (по указанию преподавателя). 5) Зарисуйте рисунок в тетрадь, запишите полученные результаты, либо распечатайте результат на принтере. 6) Ответьте на вопросы и решите задачи, расположенные в правой половине экрана. 7) Кликните мышью «Журнал». Обнулите результаты в таблице, нажав кнопку «Сброс результатов». 8) Проведите минитестирование. Ответьте на вопросы из раздела «Вопросы» и решите задачи из раздела «Задачи». Результат сообщите преподавателю. 9) Дома проработайте модель 1.4 из раздела «Модели». 10) Напишите вывод.
3. Контрольные вопросы
1. Перечислите и дайте определения основных разделов механики. 2. Модели в механике. 3. Что называется телом отсчета, системой отсчета? 4. Дайте определения траектории, длины пути, вектора перемещения. 5. Какое движение называется поступательным? 6. Дайте определение средней и мгновенной скоростей. 7. Ускорение и его (тангенциальная и нормальная) составляющие. 8. Относительные величины. 9. Закон сложения скоростей. 10. Какое движение называется равномерным? 11. Закон движения при равномерном прямолинейном движении.
Лабораторная работа № 2
Движение тел с ускорением. Равноускоренное движение. Скорость и ускорение. Свободное падение тела
Цель работы: изучение равноускоренного движения, понятий скорость и ускорение, свободного падения тел, моделей. Краткая теория В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения
При равноускоренном прямолинейном движении скорость тела определяется формулой
В этой формуле υ0 – скорость тела при t=0 (начальная скорость), a=const – ускорение. На графике скорости υ(t) эта зависимость изображается прямой линией (рис. 1.2).
Чем больше угол β, который образует график скорости с осью времени, т.е. чем больше наклон графика (крутизна), тем больше ускорение тела. Для графика I: υ0 = –2 м/с, a = 1/2 м/с2. Для графика II: υ0 = 3 м/с, a = –1/3 м/с2. Изучите модель «Скорость и ускорение».
График скорости позволяет также определить проекцию перемещения s тела за некоторое время t. Выделим на оси времени некоторый малый промежуток времени Δt. Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т.е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt. Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt. Это перемещение равно площади заштрихованной на рис. 1.2 полоски. Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt, можно получить, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF. Соответствующие построения выполнены на рис. 1.2 для графика II. Время t принято равным 5,5 с.
Так как υ – υ0 = at, окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:
Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y0 прибавить перемещение за время t:
Это выражение называют законом равноускоренного движения. Изучите модель «Графики равноускоренного движения».
При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a. Эта задача может быть решена с помощью уравнений (1.1) и (1.2) путем исключения из них времени t. Результат записывается в виде
Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ0, ускорение a и перемещение s:
Если начальная скорость υ0 равна нулю, эти формулы принимают вид
Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s, a, y0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения. В случае достаточно малого промежутка времени Δt пройденный телом путь Δl почти совпадает с модулем вектора перемещения Изучите модель «Равноускоренное движение тела».
Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученый Г. Галилей опытным путем установил с доступной для того времени точностью, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. До этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких. Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Вектор ускорения свободного падения обозначается символом Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости. Свободное падение является прямолинейным движением с постоянным ускорением. Если направить координатную ось OY вертикально вверх, совместив начало координат с поверхностью Земли, то для анализа свободного падения без начальной скорости можно использовать формулу (1.3), положив υ0 = 0, y0 = h, a = –g. Обратим внимание на то, что если тело при падении оказалось в точке с координатой y < h, то перемещение s тела равно s = y – h < 0. Эта величина отрицательна, так как тело при падении перемещалось навстречу выбранному положительному направлению оси OY. В результате получим:
Скорость отрицательна, так как вектор скорости направлен вниз.
Время падения tn тела на Землю найдется из условия y = 0:
Скорость тела в любой точке составляет:
В частности, при y = 0 скорость υn падения тела на землю равна
Пользуясь этими формулами, можно вычислить время падения тела с данной высоты, скорость падения тела в любой момент после начала падения и в любой точке его траектории и т. д. Аналогичным образом решается задача о движении тела, брошенного вертикально вверх с некоторой начальной скоростью υ0. Если ось OY по-прежнему направлена вертикально вверх, а ее начало совмещено с точкой бросания, то в формулах равноускоренного прямолинейного движения следует положить: y0 = 0, υ0 > 0, a = –g. Это дает:
Через время υ0 /g скорость тела υ обращается в нуль, т.е. тело достигает высшей точки подъема. Зависимость координаты y от времени t выражается формулой
Тело возвращается на землю (y = 0) через время 2υ0 / g, следовательно, время подъема и время падения одинаковы. Во время падения на землю скорость тела равна –υ0, т.е. тело падает на землю с такой же по модулю скоростью, с какой оно было брошено вверх. Максимальная высота подъема
Максимальная высота подъема h = 5 м. Тело возвращается на землю через время 2 секунды. График III – продолжение графика I. Свободно падающее тело при ударе о землю отскакивает (мячик), и его скорость за очень короткое время меняет знак на противоположный. Дальнейшее движение тела не отличается от случая II. Задача о свободном падении тел тесно связана с задачей о движении тела, брошенного под некоторым углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат направить вертикально вверх (ось OY), а другую (ось OX) - расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси OY и равномерного прямолинейного движения вдоль оси OX. На рис. 1.4 изображен вектор начальной скорости
Дальность полета:
Максимальная высота подъема:
Изучите модель «Движение тела, брошенного под углом к горизонту».
Движение тела, брошенного под углом к горизонту, происходит по параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.
Популярное: ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1413)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |