Сочетания с повторениями
Тема 1.ЭЛЕМЕНТЫ КОМБИНАТОРИКИ Для успешного решения задач с использованием классического определения вероятности необходимо знать основные правила и формулы комбинаторики. Комбинаторика происходит от латинского слова ”combinatio” соединение. Группы, составленные из каких-либо предметов, (безразлично каких, например, букв, цветных шаров, кубиков, чисел и т.п.), называются соединениями (комбинациями). Предметы, из которых состоят соединения, называются элементами. Различают три типа соединений: перестановки, размещения и сочетания.
Размещения Размещениями из n элементов по m в каждом называются такие соединения, каждое из которых содержит m элементов, взятых из числа данных n элементов, и которые отличаются друг от друга либо самими элементами (хотя бы одним), либо лишь порядком их расположения. Число размещений из n элементов по m в каждом обычно обозначается символом и вычисляется по формуле (1.1)[1]:
Понятие факториала Произведение n натуральных чисел от 1 до n обозначается сокращенно n!, то есть (читается: n факториал). Например, . Считается, что 0! = 1. Используя понятие факториала, формулу (1.1) можно представить так:
где . Очевидно, что = n (при m=1) и = 1 (при m=0).
Размещения с повторениями
Размещение с повторениями из n элементов по m(m × n) элементов может содержать любой элемент сколько угодно раз от 1 до m включительно, или не содержать его совсем, то есть каждое размещение с повторениями из n элементов по m элементов может состоять не только из различных элементов, но из m каких угодно и как угодно повторяющихся элементов. Соединения, отличающиеся друг от друга хотя бы порядком расположения элементов, считаются различными размещениями. Число размещений с повторениями из n элементов по m элементов будем обозначать символом (c повт.) Можно доказать, что оно равно nm.
Сочетания Сочетаниями из n элементов по m в каждом называются такие соединения, каждое из которых содержит m элементов, взятых из числа данных n элементов, и которые отличаются друг от друга по крайней мере одним элементом. Число сочетаний из n элементов по m в каждом обозначается символом и вычисляется так:
или
Сочетания с повторениями Сочетание с повторениями из n элементов по m(m Î n) элементов может содержать любой элемент сколько угодно раз от 1 до m включительно, или не содержать его совсем, то есть каждое сочетание из n элементов по m элементов может состоять не только из m различных элементов, но из m каких угодно и как угодно повторяющихся элементов. Следует отметить, что если, например, два соединения по m элементов отличаются друг от друга только порядком расположения элементов, то они не считаются различными сочетаниями. Число сочетаний с повторениями из n элементов по m будем обозначать символом Формула для вычисления числа сочетаний с повторениями:
Замечание: m может быть и больше n. Перестановки
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Почему стероиды повышают давление?: Основных причин три... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (860)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |