Мегаобучалка Главная | О нас | Обратная связь


Задачи для самостоятельного решения. 1). Найти все значения параметра а, при которых корни уравнения принадлежат отрезку



2016-01-26 2710 Обсуждений (0)
Задачи для самостоятельного решения. 1). Найти все значения параметра а, при которых корни уравнения принадлежат отрезку 0.00 из 5.00 0 оценок




 

1). Найти все значения параметра а, при которых корни уравнения принадлежат отрезку .

 

Ответ:

2). При каких значениях а только больший корень принадлежит

промежутку

 

Ответ:

3).При каких а оба корня уравнения х2 –6ах +2-2а+9а2=0 больше 3?

 

4).При каких а оба корня уравнения х2 –ах=2=0 лежат на интервале (0;3)?

5). При каких а один корень уравнения ах2 +х+1=0 больше 2, а другой меньше 2?

Решение биквадратных уравнений

Пример 1

- меньший корень

- больший корень

Схема решения уравнения

 

1). Уравнение не имеет решение
2). Уравнение имеет одно решение
3). Уравнение имеет два решения
4). Уравнение имеет три решения  
5). Уравнение имеет четыре решения  

 


 

Задача 1. При каких значениях параметра а уравнение

не имеет корней ?

Решение: Уравнение является биквадратным. Сделав замену где получим новое уравнение

,

оказавшиеся квадратным.

Для того чтобы исходное уравнение не имело корней, новое уравнение либо вообще не должно иметь корней, либо оба его корня (равные или различные ) должны быть отрицательными.

Найдем дискриминант

Квадратное уравнение не имеет корней, если его дискриминант то есть откуда

Оба корня будут отрицательными, если Отрицательно, а произведение положительно, а тогда имеем систему

 

 

 

Решением последней системы является промежуток

Объединив промежутки и получим промежуток, Итак , исходное уравнение не имеет корней при

 

Ответ:

 

Задача2. В зависимости от значений параметра а определить количество корней уравнения

(1)

Решение:

Полагая перепишем уравнение (1) в виде

 

Откуда находим

 

Таким образом, уравнение (1) будет иметь четыре корня, если значение параметра а удовлетворяют системе неравенств

Решая последнюю систему, получаем, что

Очевидно также, что уравнение (1) имеет три корня, если значения параметра а удовлетворяют системе

Далее уравнение (1) имеет два корня, если значения параметра а удовлетворяют ими систем неравенств

 

Или система

 

В первом случае втором

Теперь, если значение параметра а удовлетворяют системе

Т.е. если то уравнение (1) имеет одно решение.

Наконец, уравнение (1) не будет иметь решений при тех значениях параметра а, которые удовлетворяют совокупности

 

Ответ: если то четыре корня;

если то три корня;

если то два корня;

если то один корень;

если то нет корней.

 

 

Задачи для самостоятельного решения

 

1). Найти все значения параметра а, при которых уравнение

а) не имеет корней

б) имеет только один корень

в) имеет два различных корня

г) имеет четыре различных корня

 

Ответ:

а)

б)

в)

г)

 

.



2016-01-26 2710 Обсуждений (0)
Задачи для самостоятельного решения. 1). Найти все значения параметра а, при которых корни уравнения принадлежат отрезку 0.00 из 5.00 0 оценок









Обсуждение в статье: Задачи для самостоятельного решения. 1). Найти все значения параметра а, при которых корни уравнения принадлежат отрезку

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2710)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)