Мегаобучалка Главная | О нас | Обратная связь


Обратное рассеяние света при температурном воздействии



2016-01-26 989 Обсуждений (0)
Обратное рассеяние света при температурном воздействии 0.00 из 5.00 0 оценок




Оптические волокна изготовлены из легированного кварцевого стекла. Кварцевое стекло представляет собой разновидность двуокиси кремния (SiO2) с аморфной твердотельной структурой. Температурные воздействия инициируют вибрации в молекулярной решетке. Когда свет попадает на термически возбужденные молекулы, происходит взаимодействие между световыми частицами (фотонами) и электронами. Таким образом, в оптическом волокне происходит световое рассеяние, так же известное, как рамановское рассеяние.

Обратное световое рассеяние состоит из нескольких спектральных составляющих:
• Рэлеевское рассеяние, с длиной волны аналогичной, используемой в лазерном источнике;
• Стоксовы компоненты Рамановского рассеяния с длиной волны большей, чем у используемого лазерного источника, при которых испускаются фотоны;
• Антистоксовы компоненты Рамановского рассеяния с меньшей длиной волны, по сравнению с рэлеевским рассеянием, при которых фотоны поглощаются.

Интенсивность рассеяния так называемого антистоксова диапазона зависит от температуры, в то время как, стоксов диапазон от температуры практически не зависит. Локальная температура оптического волокна выводится из отношения антистоксовой и стоксовой интенсивностей света.

• Бриллюэновские линии, которые более интенсивные чем Стоксовы, но имеют меньший спектральный сдвиг Этот спектральный сдвиг вызван акустическими колебаниями кристаллической решетки волокна и несет в себе информацию о механических напряжениях и температурах, воздействующих на волокно. Воздействие механических напряжений и температур приводит к изменению положения Бриллюэновской линии на шкале длин волн.

 

Датчики температуры на основе Рамановских линий. Методы измерения.

Самым современным оборудованием в системе мониторинга распределения температуры, например в трубопроводах, является распределенный оптоволоконный датчик температуры на основе Рамановских линий. Принципом работы датчика является то, что интенсивность Стоксовой Рамановской компоненты рассеянного излучения практически не зависит от температуры, а интенсивность Антистоксовой линии сильно связана с температурой. Это позволяет, определяя отношение интенсивности Антистоксовой линии и Стоксовой линии, определять значение температуры. Данный подход позволяет избавиться от погрешности, связанной с возможными флуктуациями мощности зондирующего лазерного импульса. Системы этого типа могут работать на расстояниях в несколько километров. Пространственное разрешение может достигать 0,5 м.


Метод измерения

Самым известным методом обратного рассеивания является метод OTDR (= Optical Time Domain Reflectometry = оптическая рефлектометрия временной области). В его основе заложен импульсно-акустический метод (импульсы и эхо), в результате разницы времени распространения между временем передачи и обнаружения световых импульсов можно определить уровень и место рассеивания. Соотношение излучаемого рассеивания света с эффектом Рамана, сигнал обратного рассеивания при измерении комбинационного рассеянного света составляет коэффициент 1000. Поэтому локально распределенный датчик температуры Рамана с техникой OTDR может быть реализован только с помощью мощных (дорогих) импульсных лазеров (обычно лазеров с твердым рабочим веществом) и быстрой, также дорогостоящей, техникой передачи сигналов.

Разработанный компанией «LIOS Technology GmbH» температурный датчик Рамана OFDR (OFDR, Optical Frequency Domain Reflectometry = рефлектометрия частотной области) работает не во временном диапазоне, как техника OTDR, а в частотном. При методе OFDR получают информацию о локальном изменении температуры, если сигнал обратного рассеивания, обнаруженный на протяжении всего времени измерения, измеряется как функция частоты и в комплексе (комплексная передаточная функция), а затем подвергается преобразованию Фурье. Существенными преимуществами техники OFDR являются режим квазинепрерывного излучения лазера и узкополосное обнаружение оптического сигнала обратного рассеивания, вследствие чего, достигается значительно более высокое отношение сигнал / шум, чем при использовании импульсной техники. Данное техническое преимущество позволяет использовать недорогие полупроводниковые лазерные диоды и недорогостоящие электронные блоки для передачи сигналов. Им противопоставляется технически сложное измерение комбинационного рассеиваемого света (комплексное измерение в соответствии с величиной и фазой) и высокая затратная часть из-за БПФ (блока преобразования Фурье), необходимого для обработки сигнала и с более высокими требованиями к линейности электронных блоков и компонентов.

36.Структура измерительной системы.

Схематическая структура волоконно-оптической системы измерения температуры состоит из блока формирования сигнала с частотным генератором, лазера, оптического модуля, приемного блока и блока микропроцессора, а также световодного кабеля (кварцевое стеклянное волокно) в качестве линейного температурного датчика. В соответствии с методом OFDR интенсивность лазера в течение интервала времени измерения модулируются синусообразно, а частота — в виде линейной частотной модуляции. Отклонение частоты является прямой причиной для локального срабатывания рефлектометра. Частотномодулированный свет лазера направляется в световод. В любой точке вдоль волокна возникает комбинационный рассеянный свет, излучаемый во всех направлениях. Часть комбинационного рассеянного света движется в обратном направлении к блоку формирования сигнала. Затем выполняется спектральная фильтрация света обратного рассеивания, его преобразование в измерительных каналах в электрические сигналы, усиление и электронная обработка. Микропроцессор проводит расчет преобразования Фурье. В качестве промежуточного результата получают кривые комбинационного обратного рассеивания как функцию длины кабеля. Амплитуда кривых обратного рассеивания пропорциональна интенсивности соответствующего комбинационного рассеивания. Из отношения кривых обратного рассеивания получают температуру волокна вдоль световодного кабеля. Технические спецификации системы измерения температуры Рамана могут быть оптимизированы посредством настройки параметров прибора (дальность действия, локальное разрешение, точность температуры, время измерения). Возможна также регулировка световодного кабеля в соответствии с возможностями конкретного случая применения. Термическая стойкость стекловолоконного покрытия ограничивает максимальный диапазон температуры световодного кабеля. Стандартные волокна для передачи данных располагают акриловым покрытием или покрытием, затвердевшим в результате УФ (ультрафиолетового) излучения, и пригодны для диапазона температур до 80 °C. Стекловолокно с полиамидным покрытием может использоваться до максимальной температуры 400 °C.



2016-01-26 989 Обсуждений (0)
Обратное рассеяние света при температурном воздействии 0.00 из 5.00 0 оценок









Обсуждение в статье: Обратное рассеяние света при температурном воздействии

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (989)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)