Мегаобучалка Главная | О нас | Обратная связь


Упруго-пластическая работа стали при изгибе. Шарнир пластичности. Основы расчета изгибаемых элементов



2016-01-26 3805 Обсуждений (0)
Упруго-пластическая работа стали при изгибе. Шарнир пластичности. Основы расчета изгибаемых элементов 0.00 из 5.00 0 оценок




Напряжение при изгибе в упругой стадии распределяется в сечении по линейному закону. Напряжения в крайних волокнах для симметричного сечения определяются формулой:

 

,

 

где М – изгибающий момент;

W — момент сопротивления сечения.

С увеличением нагрузки (или изгибающего момента М) напряжения будут увеличиваться и достигнут значения предела текучести Ryn.

Ввиду того, что предела текучести достигли только крайние волокна сечения, а соединенные с ними менее напряженные волокна могут еще работать, несущая способность элемента не исчерпана. С дальнейшим увеличением изгибающего момента будет происходить удлинение волокон сечения, однако напряжения не могут быть больше Ryn. Предельной эпюрой будет такая, в которой верхняя часть сечения до нейтральной оси равномерно сжата напряжением Ryn. Несущая способность элемента при этом исчерпывается, а он может как бы поворачиваться вокруг нейтральной оси без увеличения нагрузки; образуется шарнир пластичности.

В месте пластического шарнира происходит большое нарастание деформаций, балка получает угол перелома, но не разрушается. Обычно балка теряет при этом либо общую устойчивость, либо местную устойчивость отдельных частей. Предельный момент, отвечающий шарниру пластичности,

 

,

 

где Wпл = 2S – пластический момент сопротивления

S – cтатический момент половины сечения относительно оси, проходящий через центр тяжести.

Пластический момент сопротивления, а следовательно предельный момент, отвечающий шарниру пластичности больше упругого. Нормами разрешается учитывать развитие пластических деформаций для разрезных прокатных балок, закрепленных от потери устойчивости и несущих статическую нагрузку. Значение пластических моментов сопротивления при этом принимаются: для прокатных двутавров и швеллеров:

 

Wпл =1,12W – при изгибе в плоскости стенки

Wпл =1,2W – при изгибе параллельно полкам.

Для балок прямоугольного поперечного сечения Wпл = 1,5 W.

 

По нормам проектирования развития пластических деформаций допускается учитывать для сварных балок постоянного сечения при отношениях ширины свеса сжатого пояса к толщине пояса и высоты стенки к ее толщине .

В местах наибольших изгибающих моментов недопустимы наибольшие касательные напряжения; они должны удовлетворять условию:

.

Если зона чистого изгиба имеет большую протяженность, соответствующий момент сопротивления во избежании чрезмерных деформаций принимается равным 0,5(Wyn+Wпл).

В неразрезных балках за предельное состояние принимается образование шарниров пластичности, но при условии сохранения системой своей неизменяемости. Нормами разрешается при расчете неразрезных балок (прокатных и сварных) определять расчетные изгибающие моменты исходя из выравнивания опорных и пролетных моментов (при условии, что смежные пролеты отличаются не больше чем на 20%).

Во всех случаях, когда расчетные моменты принимаются в предположении развития пластических деформаций (выравнивания моментов), проверку прочности следует производить по упругому моменту сопротивления по формуле:

 

При расчете балок из алюминиевых сплавов развитие пластических деформаций не учитывается. Пластические деформации пронизывают не только наиболее напряженное сечение балки в месте наибольшего изгибающего момента, но и распространяются по длине балки. Обычно в изгибаемых элементах кроме нормальных напряжений от изгибающего момента есть еще и касательное напряжение от поперечной силы. Поэтому условие начала перехода металла в пластическое состояние в этом случае должно определяться приведенными напряжениями sчеd:

 

.

 

Как уже отмечалось, начало текучести в крайних фибрах (волокнах) сечения еще не исчерпывает несущие способности изгибаемого элемента. При совместном действии s и t предельная несущая способность примерно на 15% выше чем при упругой работе, и условие образования шарнира пластичности записывается в виде:

 

,

 

При этом должно быть .

 

 



2016-01-26 3805 Обсуждений (0)
Упруго-пластическая работа стали при изгибе. Шарнир пластичности. Основы расчета изгибаемых элементов 0.00 из 5.00 0 оценок









Обсуждение в статье: Упруго-пластическая работа стали при изгибе. Шарнир пластичности. Основы расчета изгибаемых элементов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3805)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)