Мегаобучалка Главная | О нас | Обратная связь


Гаметогенез, ово - и сперматогенез



2016-09-16 759 Обсуждений (0)
Гаметогенез, ово - и сперматогенез 0.00 из 5.00 0 оценок




Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет.
Оогене́з или овогене́з — у животных, развитие женской половой клетки — яйцеклетки (яйца). Во время эмбрионального развития организма гоноциты вселяются в зачаток женской половой гонады (яичника), и всё дальнейшее развитие женских половых клеток происходит в ней

Оогенез совершается в три этапа, называемых периодами.

Период размножения Попав в яичник, гоноциты становятся оогониями. Оогонии осуществляют период размножения. В этот период оогонии делятся митотическим путем. Этот процесс происходит только в период эмбрионального развития самки.

Период роста Половые клетки в этом периоде называются ооцитами первого порядка. Они теряют способность к митотическому делению и вступают в профазу I мейоза. В этот период осуществляется рост половых клеток. В периоде роста выделяют 2 стадии:

Стадия малого роста (превителлогенез) — объём ядра и цитоплазмы увеличивается пропорционально и незначительно. При этом ядерно-цитоплазматическое отношение не нарушается. На этой стадии происходит активный синтез всех видов РНК — рибосомных, транспортных и матричных. Все эти типы РНК синтезируются преимущественно впрок, т.е. для использования уже оплодотворенной яйцеклеткой.

Стадия большого роста (вителлогенез) — объём цитоплазмы ооцита может увеличиться в десятки тысяч раз, в то время как объём ядра увеличивается незначительно. Таким образом, ядерно-цитоплазматическое отношение сильно уменьшается. На этой стадии в ооците I порядка образуется желток. По способу образования желток принято разделять на экзогенный и эндогенный. Присущий большинству видов животных экзогенный желток строится на основе белка-предшественника вителлогенина, который поступает в ооцит извне. У позвоночных вителлогенин синтезируется в печени матери и транспортируется к содержащему ооцит фолликулу по кровеносным сосудам. Попадая затем в пространство, непосредственно окружающее ооцит (периооцитное пространство), вителлогенин поглощается ооцитом путём пиноцитоза.

Период созревания Созревание ооцита — это процесс последовательного прохождения двух делений мейоза (делений созревания). Как уже говорилось выше, при подготовке к первому делению созревания ооцит длительное время находится на стадии профазы I мейоза, когда и происходит его рост. Выход из профазы I мейоза приурочены к достижению самкой половозрелости и определяются половыми гормонами.

Из двух делений созревания первое у большинства видов является редукционным, так как именно в ходе этого деления гомологичные хромосомы расходятся по разным клеткам. Таким образом, каждая из разделившихся клеток приобретает половинный (гаплоидный) набор хромосом, где каждый ген представлен лишь одной аллелью.

Поскольку первому делению созревания предшествовала S-фаза, каждая из разошедшихся хромосом содержит двойное количество ДНК (две хроматиды). Эти генетически идентичные хроматиды и расходятся по сестринским клеткам во втором делении созревания, которое является эквационным (как и обычное деление соматических клеток). После двух делений созревания число хромосом в каждой из клеток оказывается гаплоидным (1n), а общее количество хроматина в каждом клеточном ядре будет соответствовать 1с.
Сперматогене́з — развитие мужских половых клеток (сперматозоидов), происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза. Сперматозоиды развиваются из клеток-предшественников, которые проходят редукционные деления (деления мейоза) и формируют специализированные структуры (акросома, жгутик и пр.). В разных группах животных сперматогенез различается. У позвоночных животных сперматогенез проходит по следующей схеме: в эмбриогенезе первичные половые клетки — гоноциты мигрируют в зачаток гонады, где формируют популяцию клеток, называемых сперматогониями. С началом полового созревания сперматогонии начинают активно размножаться, часть из них дифференцируется в другой клеточный тип — сперматоциты I порядка, которые вступают в мейоз и после первого деления мейоза дают популяцию клеток, называемых сперматоцитами II порядка, проходящих впоследствии второе деление мейоза и образующих сперматиды; путём ряда преобразований последние приобретают форму и структуры сперматозоида в ходе спермиогенеза.
3. Хромосомы - химический состав, надмолекулярная организация (уровни упаковки).

Химический состав хромосом.Молекулярно-биологические исследования позволили получить представление не только о химической структуре хромосом, но также и об их надмолекулярной организации и особенностях функционирования. В настоящее время известно, что хромосомы представляют собой нуклеопротеидные образования, состоящие из ДНК и белка. Кроме того, в хромосомах присутствует некоторое количество РНК, образующейся при транскрипции, и ионы Са+ и Mg+.Каждая хроматида, а в промежутке времени анафаза- S -период интерфазы и хромосома, содержит одну молекулу ДНК, которая определяет все функции хромосомы, связанные с хранением наследственной информации, её передачей и реализацией.Молекула ДНК в хромосомах тесно связана с двумя классами белков- гистонами (основные белки) и негистонами (кислые белки).Гистоны - это небольшие по величине белки с высоким содержанием заряженных аминокислот (лизина и аргинина).Суммарный положительный заряд позволяет гистонам связываться с ДНК независимо от нуклеотидного состава. Им принадлежит в основном структурная функция. Это очень стабильные белки, молекулы которых могут сохраняться в течение всей жизни клетки.В эукариотической клетке присутствуют 5 типов гистонов, которые распределяются на две основные группы: первая группа (их обозначают как Н2А, Н2В, НЗ, Н4), отвечает за формирование специфических дезоксирибонуклеопротеидных комплексов - нуклеосом. Вторая группа гистонов (HI) располагается между нуклеосомами и фиксирует укладку нуклеосомной цепи в более высокий уровень структурной организации (супернуклеосомную нить).Среди гистоновых белков, кроме структурных, встречаются такие, которые способны ограничивать доступность ДНК для ДНК - связывающих регуляторных белков и тем самым участвовать в регуляции активности генов. Негистоновые белки весьма разнообразны. Число их фракций превышает 100. Они присутствуют в меньших количествах в хромосомах в сравнении с гистонами и выполняют в основном регуляторную функцию. Участвуют в регуляции транскрипционной активности генов, в обеспечении редупликации и репарации ДНК. Большинство негистоновых белков хроматина присутствуют в клетках в небольшом количестве (минорные) - это регуляторные белки, узнающие специфические последовательности ДНК и связывающиеся с ними. Они вовлечены во многие генетические процессы, но известно о них пока что немного. Количественно преобладают негистоновые белки (мажорные), высокоподвижные, относительно малого размера, с большим электрическим зарядом - они всегда соединяются с нуклеосомами, содержащими активные гены. Кроме того, в группу негистоновых белков входит много ферментов. Надмолекулярная организация хромосом.Надмолекулярная организация хромосом называется еще или спирализацией, или конденсацией, или компактизацией. В настоящее время принято три уровня надмолекулярной организации хромосом: первичный, вторичный, третичный.Компактизация ДНК для эукариотической клетки важна по двум причинам: она позволяет не запутать и упорядоченно расположить очень длинные молекулы ДНК в небольшом объеме клеточного ядра и, кроме того, это один из способов функционального контроля генов - характер упаковки ДНК влияет на активность некоторых участков генома.Первичный уровень надмолекулярной организации — нуклеосомный. Элементарной структурой хромосомы, различаемой с помощью электронного микроскопа, является нить, диаметром 10-13 нм, представляющая собой комплекс ДНК и гистоновых белков. Эта нить состоит из гистонового остова (в виде цепочки расположенных друг за другом белковых телец дисковидной формы), поверх которого спирально закручена нить ДНК. Комплекс ДНК и гистонов на уровне одного дисковидного тельца называется нуклеосомой. Она содержит по две молекулы каждого из 4-х типов гистона (Н2А, Н2В, НЗ, Н4), соединенных в форме октамера. ДНК в нуклеосоме лежит поверх октамера, накручиваясь спирально на гистоновый остов. На уровне каждой нуклеосомы ДНК образует 2,3 оборота спирали, что соответствует примерно 200 парам нуклеотидов. Связь между соседними нуклеосомами осуществляется за счет гистона HI. На этот связывающий участок приходится 60 пар нуклеотидов. Формируется нить диаметром примерно 11 нм. Нуклеосома - это универсальная частица, которая обнаруживается как в эухроматине, так и в гетерохроматине, в интерфазном ядре и метафазных хромосомах. В случае линейной выпрямляемости, которая едва ли присутствует в живой клетке, образуемая нуклеосомами структура напоминает нитку "бус" и называется нуклеосомной нитью. Благодаря нуклеосомной организации хромосом происходит укорочение исходной длины ДНК в 7раз, т.е. происходит компактизация. Это, видимо, состояние интерфазной хромосомы, ее эухроматиновых участков. Дальнейшая компактизация ДНК в составе хромосом связана с образованием наднуклеосомных структур. Так, вторичный уровень хромосомной укладки ДНК выражается в формировании суперспиральной нити (соленоида), в которой исходная молекула ДНК укорачивается в 40раз. Толщина достигает 30-40 нм. При образовании суперспирали нуклеосомная нить спирально закручивается за счет взаимодействия гистонов HI и НЗ. Не исключено также и участие в этом негистоновых белков. Этот уровень укладки ДНК соответствует, по-видимому, наблюдаемым под световым микроскопом профазным митотическим и мейотическим хромосомам. Или интерфазным, но не транскрибируемым, возможно, участкам хромосом, т. е. гетерохроматиновым. Третий уровень хромосомной укладки изучен менее всего. Существует две модели: в основу первой положен принцип спиральной укладки, в основе второй - строение по принципу складывания петель. В последние годы накоплен многочисленный материал, говорящий о реальности петлеобразных структур в хромосоме, и их плотной упаковке в метафазной хромосоме вокруг осевого каркаса, построенного из негистоновых белков. Петлевые структуры, но не плотно упакованные, есть и в интерфазной хромосоме. Вокруг каркаса, как в щетке-ерше, располагаются петли суперспиральной нити. Причем концы каждой петли локализуются на одной и той же точке белкового каркаса. Предполагается также, что петли могут скручиваться вокруг своей собственной оси, т.е. метафазную хромосому можно изобразить в виде плотно уложенных соленоидных петель, свернутых в тугую спираль. Типичная хромосома человека может содержать до 2600 петель. Третий уровень укладки - это конденсация профазной хромосомы в метафазную. Толщина такой структуры достигает 1400 нм (две хроматиды), а молекула ДНК при этом укорачивается в I04 раз, т.е. с 5 см растянутой ДНК до 5 мкм. Эта суперспирализация сопровождается фосфорилированием в клетке всех молекул HI. В любом случае, ДНК в ядрах эукариотических клеток образует иерархическую систему спиралей и петель, основной единицей которой является нуклеосома. Нуклеосомы, в свою очередь, расположены не везде строго одинаково. Эти малозаметные и малоизученные различия биологически очень важны, т.к. по-видимому, они преимущественно происходят в тех областях хроматина, где находятся активные гены. В S-период интерфазы процесс репликации каким-то образом, как - неизвестно, проходит через нуклеосомы родительской цепи хроматина, которые переходят на одну из дочерних спиралей ДНК. Тогда все новые октамеры гистонов присоединяются ко второй дочерней спирали ДНК, свободной от нуклеосом. Нуклеосомная структура сохраняется и во время транскрипции ДНК, хотя довольно трудно представить себе как РНК-полимераза может транскрибировать ассоциированную с гистонами ДНК без каких-либо заметных измене­ний в организации нуклеосомы. Но в клетках эмбрионов насекомых в области активированных генов для р-РНК, по-видимому, нуклеосомы отсутствуют. И биохимические отличия между транскрибируемым активным и неактивным хроматином обнаружены. В частности, HI соединен с нуклеосомами гораздо менее прочно в активном хроматине и вообще гистоны в этих участках обна­руживают более высокую степень ацетилирования.



2016-09-16 759 Обсуждений (0)
Гаметогенез, ово - и сперматогенез 0.00 из 5.00 0 оценок









Обсуждение в статье: Гаметогенез, ово - и сперматогенез

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (759)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)