Мегаобучалка Главная | О нас | Обратная связь


Теоретические основы работы поршневых компрессоров



2016-09-16 921 Обсуждений (0)
Теоретические основы работы поршневых компрессоров 0.00 из 5.00 0 оценок




Принцип работы поршневого компрессора.

Индикаторные диаграммы рабочих циклов поршневого компрессора.

Подача поршневого компрессора, факторы, влияющие на неё.

Многоступенчатое сжатие газа.

 

Поршневой компрессор — машина, предназначенная для преобразования энергии газа (пара, жидкости) с помощью поршня и обеспечивающая высокие давления нагнетания (до 40 МПа и выше).

Преимущества таких компрессоров — высо­кие значения к. п. д. и степени повышения давления цилиндров в одной ступени, максимальное давление сжатия газа, возмож­ность эксплуатации в широком диапазоне изменения давлений компримируемого газа, возможность построения на базе одной модели различных компрессорных схем и сохранения мощности при изменении условий эксплуатации. Важное достоинство поршневых компрессоров — незначи­тельная чувствительность к изменению плотности компримиру­емого газа. В то же время динамическая неуравновешенность от возвратно-поступательного компрессора оказывается причи­ной повышенной металлоемкости.

Для компримирования нефтяного и природного газов, а также воздуха, в районах с развитой системой электроснаб­жения применяют угловые и оппозитные поршневые компрес­соры с приводом от электродвигателя.

Принципиальная схема поршневого компрессора (рис. 2.1) включает цилиндр 1, поршень 2, всасывающий 3 и нагнетательный 4 клапаны, шток 5 и кривошипно – шатунный механизм, состоящий из крейцкопфа 6, шатуна 7 и кривошипа 8.

Рисунок 2.1 - Схема работы поршневого компрессора

Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:

1. расширение газа во вредном пространстве цилиндра компрессора (в клапанах и околоклапанном пространстве, в зазоре между крышкой цилиндра и плоскостью АА, соответствующей крайнему положению поршня);

2. всасывание (расширение и всасывание происходят при движении поршня от плоскости АА до плоскости ВВ на длине хода поршня s; при этом всасывающий клапан открывается не сразу, а лишь после того, как газ, находящийся во вредном пространстве цилиндра, расширится, и его давление станет меньше давления во всасывающей линии, в этот момент откроется клапан 3, и газ начнет поступать в цилиндр компрессора);

3. сжатие (происходит при движении поршня от плоскости ВВ до плоскости СС);

4. нагнетание (происходит при движении поршня от плоскости СС до плоскости АА; нагнетание газа в трубопровод начинается тогда, когда давление газа в цилиндре превысит давление в нагнетательной линии, в этот момент откроется клапан 4, и газ начнет поступать в трубопровод).

 

Характер изменения объема газа зависит от условий теплообмена между газом, деталями компрессора и окружающей средой. В зависимости от этого сжатие или расширение могут происходить:

- без теплообмена (адиабатический процесс); т. е. с нагревом газа при его сжатии;

- с частичным теплообменом (политропический процесс);

- с полным теплообменом (изотермический процесс) т. е. с сохранением одной и той же, постоянной при сжатии и расширении, температуры газа.

Как видно из определений, адиабатический и изотермический процессы являются частными случаями политропического процесса.

Политропический процесс изменения состояния идеального газа удовлетворяет уравнению:

где p – давление; V – объем газа; m – показатель политропы.

При адиабатических процессах m обозначается через k и называется показателем адиабаты. Показатель адиабаты определяется как отношение удельных (или молярных) теплоемкостей газа при постоянном давлении и объеме. Для одноатомных газов k = 1,67, для двухатомных k = 1,40 – 1,41, для многоатомных k = 1,2 – 1,3. При политропических процессах показатель политропы m может принимать значение от единицы до k и быть больше k. При изотермическом процессе m = 1.

При рассмотрении идеального цикла поршневого компрессора принимают следующие допущения:

1. Отсутствуют сопротивления движению потока газа (в том чис­ле и в клапанах).

2. Давление и температура газа во всасывающей и нагнетатель­ной линиях постоянны.

3. Давление и температура газа в период всасывания, так же как и в период выталкивания газа из цилиндра, не меняются.

4. Мертвое (вредное) пространство в цилиндре компрессора от­сутствует.

5. Нет потерь мощности на трение и нет утечек газа.

Индикаторная диаграмма идеального цикла представлена на рис. 2.2. Процесс сжатия газа поршнем характеризуют кривые 1-2. При изотермическом про­цессе это будет кривая 1-2'", при адиабатическом 1-2", а при по­литропическом 1-2 или 1-2". Рассматривая политропический процесс 1-2, видим, что за этот период цикла, объем газа умень­шится с V1 до V2 давление изме­нится от р1 до р2, а температура -от Т1 до Т2. Далее идет нагнета­ние газа в трубопровод 2-3. Дав­ление и температура газа остают­ся в этот период неизменными (p2 и T2). Весь объем газа V2 переходит в нагнетательный трубопровод. За период 3-4 в цилиндре снижается давление до давления во всасывающем трубопроводе (p1) закрывается нагнетательный клапан и с началом движения поршня вправо открывается всасывающий клапан. Период всасывания харак­теризуется линией 4-1. Здесь давление и температура газа равны р1 и T1, в цилиндр поступает объем газа, равный V1.

 

 

Рисунок 2.2 – Индикаторная диаграмма идеального цикла поршневого компрессора

Рисунок 2.3 – Индикаторная диаграмма реального цикла поршневого компрессора

Рассмотрим реальный цикл работы поршневого компрессора. Процесс сжатия газа в цилиндре соответствует линии 1-2 на инди­каторной диаграмме (рис. 2.3). В начальный момент сжатия относи­тельно холодный газ получает тепло от нагретого цилиндра, вследствие чего процесс идет с подводом тепла к газу, и политропа отклоняется вправо от политропы идеально­го процесса (пунктирная ли­ния). В конце процесса сжатия газа температура его повышает­ся и становится больше темпе­ратуры цилиндра и клапанов, и процесс сжатия идет с отводом тепла от газа. Политропа на этом участке отклоняется влево от политропы идеального про­цесса. Эти явления приводят к тому, что показатель реальной политропы процесса сжатия газа становится переменным, и расчет процесса надо вести по условному эквивалентному показателю политропы.

Понижение давления в цилиндре против давления во всасываю­щей линии (см. рис. 2.3, точка 1), в начале сжатия обусловлено со­противлением потоку газа во всасывающем клапане. Повышение давления против давления в нагнетательном трубопроводе (точка 2) в конце сжатия обусловлено усилиями, затрачиваемыми на открытие нагнетательного клапана (сопротивление пружин клапана и инерция масс деталей клапана, приводимых в движение при его открытии). Процесс нагнетания соответствует линии 2-3. Повышенное, про­тив идеального процесса, давление нагнетания обусловливается со­противлениями потоку газа в нагнетательном клапане и подводящих каналах. Некоторая волнистость линии нагнетания обусловливается непостоянством сопротивлений потоку газа из-за изменений скорос­тей поршня и газа, пульсацией давления в газопроводе и вибрацией клапанных пластин.

За процессом нагнетания в реальном цилиндре идет процесс рас­ширения газа, оставшегося в мертвом (вредном) пространстве под давлением р2" (линия 3-4). Объем вредного пространства Vм. Газ рас­ширяется, снижая давление от р2" до р4 и увеличивая свой объем до V4. При этом поршень движется вправо. Процесс расширения закан­чивается при открытии всасывающего клапана. Давление в цилинд­ре при этом будет ниже, чем во всасывающем трубопроводе, за счет усилий, затрачиваемых на открытие всасывающего клапана. Процесс расширения газа идет вначале с отбором тепла от сжато­го газа, а затем с подводом тепла к газу, и потому показатель политро­пы будет не постоянен (так же как и при сжатии газа).

За процессом расширения идет всасывание газа (линия 4-1). Давление в цилиндре при этом будет ниже давления в подводя­щем трубопроводе за счет сопротивления движению потока газа в клапане и каналах. Колебание давления всасывания в цилиндре обусловлено теми же явлениями, которые наблюдаются и при нагнетании газа.

Работа, затрачиваемая на сжатие газа, в реальном цикле опреде­ляется площадью индикаторной диаграммы 1-2-3-4 (см. рис. 2.3).

Подачей компрессораназывают объем или массу газа, проходя­щего за единицу времени по линии всасывания или линии нагнета­ния компрессора. Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.

Объемный расход газа обычно приводится к условиям всасыва­ния (к давлению и температуре во всасывающей линии), нормаль­ным условиям (давление 100 кПа и температура 293°К) или стандартным условиям (100 кПа и 293°К).

Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным усло­виям. Иногда эту подачу называют коммерческой.

Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)

(2.1)

где ar w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></wx:sect></w:body></w:wordDocument>"> - коэффициент подачи, зависящий от многих факторов;

- объем описываемый поршнем за ход в одну сторону;

п - число двойных ходов поршня в минуту (с возвращением в исходное положение).

Коэффициент подачи:

(2.2)

где коэффициенты:

- объемный;

- герметичности;

- температурный;

- давления.

Объемный коэффициент отражает степень полноты использова­ния объема цилиндра. Коэффициент герметичности это функция подачи компрессо­ра от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилинд­ров двойного действия, негерметичности соединений рабочих кана­лов. Коэффициент герметичности обычно принимается в пределах 0,95...0,98. Температурный коэффициент отражает влияние нагрева газа при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в ци­линдр из всасывающего патрубка. Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и темпе­ратура стенок каналов и цилиндра. Коэффициент давления учитывает снижение подачи компрес­сора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит мень­шее его количество. На подачу влияет уменьшение давления не в на­чале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95…0,98.

 

При необходимости сжимать газ до давления, превышающего 0,4…0,7 МПа по манометру, применяют многоступенчатое сжатие, сущность которого состоит в том, что процесс сжатия газа разбивается на несколько этапов или ступеней. В каждой из этих ступеней газ сжи­мается до некоторого промежуточного давления и перед тем как по­ступать в следующую ступень, охлаждается в межступенчатом холо­дильнике. В последней ступени газ дожимается до конечного давле­ния. В современных компрессорах высокого давления число ступе­ней сжатия достигает семи.

Причины, заставляющие применять многоступенчатое сжатие, следующие;

- выигрыш в затраченной работе;

- ограничение температуры конца сжатия;

- более высокий коэффициент подачи.

Для уменьшения работы сжатия применяется ступенчатое сжа­тие газа с охлаждением его в охладителях, расположенных между сту­пенями компрессора.

В результате охлаждения газа устраняется и другая причина, обус­ловливающая применение ступенчатого сжатия, это недопустимое повышение температуры газа при большой степени повышения дав­ления одноступенчатым компрессором. Температура на этапе сжатия газа не должна достигать значений, при которых происходит измене­ние свойств компрессорного масла. С повышением температуры газа вязкость масла уменьшается, ухудшаются условия смазки, и увели­чивается износ трущихся деталей компрессора. При достижении тем­ператур порядка 180...200°С масло разлагается, в результате чего по­верхности деталей цилиндра компрессора и нагнетательная линия покрываются нагаром. Это ухудшает охлаждение компрессора и на­рушает его нормальную работу (увеличивается трение между порш­невыми кольцами и цилиндром, возможны поломки колец и задиры поверхности цилиндра, ухудшается работа клапанов, возникает опас­ность самовозгорания и взрыва в нагнетательной линии).

 



2016-09-16 921 Обсуждений (0)
Теоретические основы работы поршневых компрессоров 0.00 из 5.00 0 оценок









Обсуждение в статье: Теоретические основы работы поршневых компрессоров

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (921)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)