ТЕМА 23. ПРОНИЦАЕМОСТЬ
Проницаемостьюназывается способность текстильных материалов пропускать различные субстанции – воздух, различные газы, водяные пары, воду, жидкости, дым, пыль, ультрафиолетовое и радиоактивное излучения и пр.
Воздухопроницаемость Воздухопроницаемость – это способность материалов пропускать воздух. Необходимым условием для прохождения воздуха через материал является наличие перепада давления воздуха (DР) по обеим сторонам пробы материала. Чем выше величина перепада давления, тем интенсивнее процесс прохождения воздуха через материал. При небольших скоростях прохождения воздуха через материалы зависимость скорости движения воздуха от величины перепада давления имеет линейный характер и выражается уравнением Д’Арси:
Такая зависимость имеет место при небольших величинах Общепринятой характеристикой воздухопроницаемости является коэффициент воздухопроницаемости
где При использовании м3 в качестве единицы измерения объема воздуха, проходящего через пробу материала, получаемое значение коэффициента воздухопроницаемости (м3/(м2×с)) численно равно скорости движения воздуха через материал (м/с). Воздухопроницаемость современных материалов колеблется в широких пределах – от 3,5 до 1500 дм3/(м2∙ с) (табл. 8 ).
Таблица 8 Группировка тканей по воздухопроницаемости (по данным Н. А. Архангельского)
Воздушный поток проходит через поры текстильного материала, поэтому показатели воздухопроницаемости зависят от структурных характеристик материала, определяющих его пористость, число и размеры сквозных пор. Материалы из тонких сильно скрученных нитей имеют большое число сквозных пор и соответственно большую воздухопроницаемость по сравнению с материалами из толстых пушистых нитей, в которых поры частично закрыты выступающими волокнами или петлями нитей. Важнейшими структурными характеристиками текстильных полотен, имеющих сквозные поры, которыми главным образом определяется их воздухопроницаемость, являются толщина полотна, величина сквозной пористости и характеристический размер поперечника (диаметр) сквозных пор. Определить значения скорости
где
В тех случаях, когда материалы не имеют сквозных пор, их воздухопроницаемость определяется величиной общей пористости, размерами пор и толщиной полотен. Так, для нетканых материалов на основе волокнистых холстов зависимость коэффициента воздухопроницаемости от их структуры выражена экспериментально полученными А. В. Куличенко уравнениями, имеющими общий вид
где К числу важнейших факторов, от которых зависит воздухопроницаемость материалов, относится их влажность. Значение этого фактора тем выше, чем большей плотностью характеризуется материал и чем выше гигроскопические свойства волокон, из которых он изготовлен. Так, по данным Б. А. Бузова, при 100 %-й влажности шерстяных суконных тканей воздухопроницаемость по сравнению с воздушно-сухим их состоянием снижается в 2–3 раза. Уменьшение воздухопроницаемости материалов при увлажнении связано с набуханием волокон и появлением микро- и макрокапиллярной влаги, что вызывает резкое сокращение числа и размеров пор и, в конечном итоге, приводит к повышению аэродинамического сопротивления материала и, соответственно, к снижению коэффициента воздухопроницаемости. Деформация текстильных материалов вызывает существенные изменения в их структуре (в частности, нарушается пористость), что приводит к изменению воздухопроницаемости. Исследования, проведенные в Ивановской государственной текстильной академии проф..В. В. Веселовым, показали, что при несимметричном двухосном растяжении ткани наблюдается вначале некоторое уменьшение воздухопроницаемости, а затем ее возрастание до 60 % от исходного значения. Это обусловлено сложным характером перестройки структуры материала, которая связана с растяжением и сжатием нитей основы и утка. Наиболее значительно влияние деформаций растяжения на воздухопроницаемость проявляется в трикотажных полотнах. В отличие от тканей трикотажные полотна имеют более высокую растяжимость, что связано с большей подвижностью их структуры, чувствительной даже к невысоким величинам прикладываемых к ним растягивающих усилий. Структурные изменения в трикотажных полотнах при приложении к ним таких усилий заключаются прежде всего в изменениях конфигурации петель. Сами нити, особенно в легко растягивающихся полотнах, могут быть напряжены незначительно. Высокая растяжимость трикотажных полотен при приложении к ним внешних нагружений является причиной не только их структурных изменений, но и изменений величин показателей их свойств, в частности проницаемости. Для таких высокорастяжимых полотен зависимость воздухопроницаемости от величины их пространственной деформации растяжения имеет линейный характер (рис.) и выражается уравнением вида где При проектировании изделий необходимы сведения не только о воздухопроницаемости материалов, из которых изготовляются те или иные изделия, но и о воздухопроницаемости пакета одежды. С увеличением числа слоев материала в пакете снижается общая воздухопроницаемость пакета (рис.22). Наиболее резкое снижение воздухопроницаемости (до 50 %) наблюдается при увеличении числа слоев материала до двух; дальнейшее повышение числа слоев влияет в меньшей степени. С введением воздушных прослоек между слоями воздухопроницаемость пакета зависит от толщины воздушной прослойки.
Рис. 22 Зависимость коэффициента воздухопроницаемости трикотажных полотен от величины поверхностной деформации 1 – поперечновязаное, интерлок (ПА нить эластик + ПУ эластомерная нить); 2 – поперечновязаное, гладь (пряжа хлопчатобумажная); 3 – поперечновязаное рисунчатое (пряжа ПАН); 4 – поперечновязаное, интерлок (пряжа шерстяная)
Рис. 23 Зависимость воздухопроницаемости пакетов тканей в зависимости от числа слоев: 1 – драп; 2 – сукно
Общая воздухопроницаемость многослойного пакета одежды рассчитывается по формуле Клейтон, которая может давать погрешность до 10 % :
где Воздухопроницаемость материалов является также технологическим свойством, так как она оказывает влияние на параметры влажно-тепловой обработки швейных изделий на паровоздушных прессах и манекенах. Влагопроницаемость Организм человека в процессе жизнедеятельности постоянно выделяет пары воды, накопление которых в пододежном и внутриобувном пространстве может вызвать неприятные ощущения, прилипаемость одежды, намокание прилегающих слоев, что приводит к снижению теплозащитных свойств изделия. Способность материалов проводить влагу из среды с повышенной влажностью в среду с пониженной влажностью является их важным гигиеническим свойством. Благодаря этому свойству обеспечивается вывод излишков парообразной и капельно-жидкостной влаги из пододежного и внутриобувного слоя или изоляция тела человека от воздействия внешней влаги (атмосферные осадки, гидроизоляционная одежда и обувь и т. п.). Процесс переноса влаги через материалы включает следующие составляющие: – диффузия и конвективный перенос; – сорбция влаги из внутреннего (пододежного или внутриобувного) пространства, перенос через полимер и десорбция во внешнюю среду; – капиллярная конденсация, капиллярное поднятие и последующая десорбция. В зависимости от размеров пор в материале может наблюдаться преобладание тех или иных составляющих процесса влагопереноса. В макропористых материалах (с преобладанием макрокапилляров с размерами поперечника от 10-7 м и более) наблюдается преобладание процесса диффузии. В тех случаях, когда материалы гидрофильны, наблюдается проявление также второй составляющей. В микропористых материалах (с преобладанием микрокапилляров, имеющих поперечные размеры менее 10-7 м) наблюдается преобладание переноса за счет сорбции – десорбции и капиллярного поднятия. Для гетеропозных материалов, т. е. имеющих микро- и макропоры, характерно наличие всех трех составляющих процесса влагопереноса. Влагопроницаемость материала существенно зависит от сорбционных свойств волокон и нитей его составляющих. Процесс влагопереноса у гидрофильных и гидрофобных материалов неодинаков. Гидрофильные материалы активно поглощают влагу и, таким образом, как бы увеличивают поверхность испарения, что практически не характерно для гидрофобных материалов. Наступление динамического равновесия между процессами сорбции и десорбции у гидрофильных материалов требует значительного времени, а у гидрофобных происходит очень быстро. В зависимости от средней плотности структуры материала преобладает тот или иной способ прохождения влаги. В текстильных материалах (с поверхностным заполнением более 85 %) преобладает перенос влаги путем ее сорбции – десорбции волокнами материала. Влагопроницаемость таких материалов зависит главным образом от способности волокон поглощать влагу. В материалах с поверхностным заполнением менее 85 % влага проходит, в основном, через поры материала. Влагопроницаемость таких материалов зависит от их структурных параметров. При заполнении по массе менее 30 % способность тканей пропускать влагу практически не зависит от гидрофильности волокон и нитей. На влагопроводность материала также оказывает влияние движение воздуха через материал. При малых скоростях воздуха преобладает процесс прохождения влаги путем сорбции – десорбции. С увеличением скорости движения воздуха более активно проявляется процесс диффузии влаги через поры. При скорости воздуха 3–10 м/с наблюдается тесная корреляционная связь между показателями воздухо- и влагопроницаемости. Способность материалов пропускать пары влаги называется паропроницаемостью. Коэффициент паропроницаемости
где А – масса водяных паров, прошедших через пробу материала, г; S – площадь пробы материала, м2; Коэффициент паропроницаемости зависит от величины воздушной прослойки Увеличение перепада температуры и перепада относительной влажности воздуха, т. е. парциального давления водяных паров, по обеим сторонам материала вызывает повышение интенсивности процесса паропроницаемости. Проведение испытаний при температуре воды 35–36 °С приближает условия испытания к условиям эксплуатации одежды, так как эта температура соответствует температуре тела человека. Относительная паропроницаемость
В связи со значительным влиянием толщины В зависимости от сопротивления паропроницаемости И. А. Димитриевой предложено делить ткани на четыре группы (табл. 9)
Таблица 9 Группировка, тканей в зависимости от их сопротивления переносу водяных паров
Проницаемость текстильных материалов при прохождении через них капельно-жидкой влаги оценивается с помощью характеристик водопроницаемости и водоупорности. Водопроницаемость — способность текстильных материалов пропускать воду при определенном давлении. Основная характеристика этого свойства – коэффициент водопроницаемости
S – площадь пробы, м2; Коэффициент водопроницаемости определяют, замеряя время прохождения через пробу материала воды объемом 0,5 дм3 под давлением Н = 5 ∙ 103 Па. Для материалов спленочным покрытием или водоотталки-вающей отделкой коэффициент водопроницаемости определяют при дождевании в течение 10 мин (ГОСТ 30292–96). Водоупорность(водонепроницаемость) – сопротивление текстильных материалов проникновению через них воды. Водоупорность характеризуетсянаименьшим давлением, при котором водa начинает проникать через материал (табл. 10 ).
Таблица 10 Нормы водоупорности плащевых тканей
По времени промокания при дождевании оценивают водоупорность материалов с водоотталкивающей пропиткой или пленочным покрытием (ГОСТ 30292–96). Водопроницаемость, водоупорность и водооттаткивание зависят от структурных показателей заполнения полотен, от их толщины, сорбционных свойств и способности к смачиванию. Для ряда швейных изделий, защищающих человека от атмосферных осадков (плащей, пальто, костюмов, зонтов, палаток и т. п.), водоупорность материалов является одним из важнейших показателей качества. Водонепроницаемость плащевых тканей оценивают также по способности плащевых материалов к водоотталкиванию, которая определяется по состоянию намокшей поверхности пробы после ее дождевания и встряхивания (табл. 11 ).
Таблица 11 Состояние поверхности материалов после дождевания
В соответствии с ГОСТ 28486–90 нормы водоотталкивания установлены в баллах и составляют для плащевых и курточных тканей из синтетических нитей с пленочным покрытием в 3 слоя не менее 80 баллов, в 1 слой – не менее 70 баллов, с водоотталкивающей отделкой – до 70 баллов. Пылепроницаемость Материалы в процессе носки изделий способны пропускать в пододежный слой или удерживать в своей структуре частицы пыли. Это приводит к загрязнению как самих материалов, так и слоев изделия, располагающихся под ними. Частицы пыли проникают сквозь материал в основном тем же путем, что и воздух – через сквозные поры материала. Удерживаются частицы пыли в структуре материала вследствие механического сцепления их с неровностями поверхности волокон и масляной смазки. Кроме того, процессу захвата материалом частиц пыли способствует их электризуемость при трении. Мельчайшие частицы пыли (менее 50 мкм) не имеют зарядов, однако способны при трении друг о друга или о материал приобретать заряд короткой продолжительности. При наличии на поверхности материала статического электричества заряженные частицы пыли притягиваются к поверхности волокон, где они впоследствии удерживаются благодаря механическому сцеплению или смазке. Таким образом, чем выше электризуемость материала, тем в большей степени он загрязняется. Рыхлая пористая структура материала из волокон с неровной поверхностью обладает способностью захватывать большее количество пыли и удерживать ее более длительное время, чем плотная структура материала, имеющего гладкие ровные волокна. По этим причинам наибольшей пылеемкостью обладают шерстяные и хлопчатобумажные ткани. Добавление в нихполиэфирныхволокон уменьшает пылеемкость. Пылепроницаемость– способность материалов пропускать частицы пыли. Она характеризуется коэффициентом пылепроницаемости
где Относительная пылепроницаемость
Пылеемкость – способность материала воспринимать и удерживать пыль. Она характеризуется относительной пылеемкостью
Показатели пылепроницаемости и пылеемкости определяют путем просасывания через материал с помощью пылесоса навески пыли, имеющей определенный состав и размер частиц. Взвешиванием устанавливают количество пыли, прошедшей через материал и осевшей на материале. Материалы разных видов имеют отличающиеся значения показателей пылепроницаемости и пылеемкости (табл.12).
Таблица 12 Пылепроницаемость и пылеемкость материалов (по данным М. И. Сухарева)
Популярное: Почему стероиды повышают давление?: Основных причин три... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (575)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |