Мегаобучалка Главная | О нас | Обратная связь


Основные термины и определения



2018-06-29 470 Обсуждений (0)
Основные термины и определения 0.00 из 5.00 0 оценок




Физические величины, определяющие ход технологического процесса, называются параметрами технологического процесса. Например, параметрами технологического процесса могут быть: температура, давление, расход, напряжение и т.д.

Параметр технологического процесса, который необходимо поддерживать постоянным или изменять по определенному закону, называется регулируемой величиной или регулируемым параметром.

Значение регулируемой величины в рассматриваемый момент времени называется мгновенным значением.

Значение регулируемой величины, полученное в рассматриваемый момент времени на основании данных некоторого измерительного прибора, называется ее измеренным значением.

Пример 1.Схема ручного регулирования температуры сушильного шкафа (рисунок 1.1).

Требуется вручную поддерживать температуру в сушильном шкафу на уровне Тзад.

Человек-оператор в зависимости от показаний ртутного термометра РТ включает или выключает нагревательный элемент Н с помощью рубильника Р.

 

Рисунок 1.1

 

На основе данного примера можно ввести определения:

Объект управления (объект регулирования) – устройство, требуемый режим работы которого должен поддерживаться извне специально организованными управляющими воздействиями.

Управление – формирование управляющих воздействий, обеспечивающих требуемый режим работы объекта управления (ОУ).

Регулирование – частный вид управления, когда задачей является обеспечение постоянства какой-либо выходной величины ОУ.

Автоматическое управление – управление, осуществляемое без непосредственного участия человека.

Входное воздействие (Х) – воздействие, подаваемое на вход системы или устройства.

Выходное воздействие (Y) – воздействие, выдаваемое на выходе системы или устройства.

Внешнее воздействие – воздействие внешней среды на систему.

Структурная схема системы регулирования к примеру 1 изображена на рисунке 1.2.

 
 

 


Пример 2.Схема автоматического регулирования температуры сушильного шкафа.

В схеме используется ртутный термометр с контактами РТК. При повышении температуры до заданной контакты замыкаются столбиком ртути, катушка релейного элемента РЭ возбуждается и цепь нагревателя Н размыкается контактом РЭ. При понижении температуры контакты термометра размыкаются, реле обесточивается, возобновляя подачу энергии на объект (рисунок 1.3). ¨

 
 

Рисунок 1.3

 

Пример 3.Схема САР температуры с измерительным мостом.

Для измерения температуры в объекте управления (шкафу) используется термометр сопротивления, принцип действия которого заключается в том, что при изменении температуры его электрическое сопротивление также изменяется (при нагреве – увеличивается, при охлаждении – уменьшается), что позволяет по изменению сопротивления судить об изменении температуры.

Основу регулирующей части составляет электронный мост. Электронным мостом называется соединение из нескольких (как правило, четырех, в рассматриваемом ниже примере – из шести) сопротивлений (см. рисунок 1.4), имеющее две диагонали: питающую (диагональ АВ), на которую подается питающее напряжение Uпит, и измерительную (диагональ CD), с которой снимается измеренное напряжение Uизм. Основное свойство моста – способность находиться в одном из двух состояний: уравновешенном (когда Uизм = 0) и неуравновешенном (Uизм ¹ 0).

Уравновешенность моста определяется сопротивлениями Ri и описывается условием

.

На схеме САР температуры, изображенной на рисунке 1.5, электронный мост обозначен как М и включает термометр сопротивления Rт и переменные сопротивления R и Rзад.

При температуре объекта, равной заданной, измерительный мост М (см. рисунок 1.5) уравновешен, на вход электронного усилителя ЭУ сигнал не поступает и система находится в равновесии. При отклонении температуры изменяется сопротивление терморезистора RТ и равновесие моста нарушается. На входе ЭУ появляется напряжение, фаза которого зависит от знака отклонения температуры от заданной. Напряжение, усиленное в ЭУ, поступает на двигатель Д, который перемещает движок автотрансформатора АТ в соответствующую сторону. При достижении температуры, равной заданной, мост сбалансируется и двигатель отключится.

       
   
 
 

 


Рисунок 1.5

 

Величина заданного значения температуры устанавливается с помощью резистора Rзад. ¨

Описанные примеры иллюстрируют общую для всех систем управления структуру. Любая система управления (ручного, автоматического или автоматизированного) в обязательном порядке содержит четыре элемента (или четыре множества элементов), объединенных в замкнутый контур передачи воздействий (см. рисунок 1.6):

- объект управления,

- управляющая часть,

- датчик (датчики),

- исполнительное устройство (устройства).

 

 


 

 

Рисунок 1.6

 

Датчик (Д) – устройство или комплекс устройств, преобразующих измеряемый параметр технологического процесса в вид, удобный для дальнейшей передачи и использования. Как правило, технологические параметры неудобно или невозможно контролировать (наблюдать, выводить на пульт оператора и т.д.) напрямую без дополнительных технических средств. Например, температуру нельзя наблюдать визуально, контроль температуры тела возможен только в сравнении со степенью нагретости какого-либо другого тела. Чтобы контроль параметров стал возможен, используют разного рода датчики, которые преобразуют измеряемые параметры в показания на шкале прибора (показывающие датчики, например, ртутный термометр), в разность потенциалов (например, термопары) в сопротивление (термометры сопротивления), в давление (пневматические датчики).

Датчик измеряет технологический параметр, преобразует его в другой вид энергии и передает управляющей части.

Управляющая часть реализует алгоритмы управления. В автоматических системах управления этой частью является регулятор, для систем ручного управления – человек-оператор. В управляющей части генерируются управляющие воздействия на объект управления (например, решения на включение/выключение рубильника, изменения напряжения и т.д.). Для реализации управляющих воздействий служат исполнительные устройства (ИУ).

Работа датчиков и исполнительных устройств в отличие от управляющей части заключается лишь в преобразовании энергии, изменения информации в них практически не происходит (если не считать погрешности). Поэтому при анализе и синтезе систем управления чаще эти части СУ опускают, считая их коэффициенты усиления равными «1». Наиболее часто в ТАУ при расчетах пользуются общей схемой одноконтурной САР (см. рисунок 1.7).

На схеме приняты обозначения: x - задающее воздействие (задание), e = х - у - ошибка регулирования, u - управляющее воздействие, f - возмущающее воздействие (возмущение).

Элемент называется сумматором. Его действие заключается в суммировании поступающих к нему сигналов. Если какой-либо сектор сумматора зачернен, то сигнал, поступающий в данный сектор, берется со знаком «минус». Поэтому в данной схеме ошибка е определяется как разность между х и у.

 

Рисунок 1.7

 

Определения:

Задающее воздействие (то же, что входное воздействие х) - воздействие на систему, определяющее требуемый закон изменения регулируемой величины).

Управляющее воздействие (u) - воздействие управляющего устройства на объект управления.

Управляющее устройство (УУ) - устройство, осуществляющее воздействие на объект управления с целью обеспечения требуемого режима работы.

Возмущающее воздействие (f) - воздействие, стремящееся нарушить требуемую функциональную связь между задающим воздействием и регулируемой величиной.

Ошибка управления (е = х - у) - разность между предписанным (х) и действительным (у) значениями регулируемой величины.

Регулятор (Р) - комплекс устройств, присоединяемых к регулируемому объекту и обеспечивающих автоматическое поддержание заданного значения его регулируемой величины или автоматическое изменение ее по определенному закону.

Система автоматического регулирования (САР) - автоматическая система с замкнутой цепью воздействия, в котором управление (u) вырабатывается в результате сравнения истинного значения у с заданным значением х.

Дополнительная связь в структурной схеме САР, направленная от выхода к входу рассматриваемого участка цепи воздействий, называется обратной связью (ОС). Обратная связь может быть отрицательной или положительной.

Принцип функционирования одноконтурной САР: регулятор производит постоянное сравнение текущего значения регулируемой величины у с заданным значением х, определяя ошибку е = ху. Если текущее значение равно заданному, то регулятор не изменяет управляющее воздействие (САР работает в установившемся режиме), в противном случае управляющее воздействие на объект u изменяется в соответствии с величиной ошибки. Чем больше ошибка регулирования (и дольше она наблюдается), тем больше изменение управляющего воздействия.

Данная схема справедлива как для автоматического, так и для ручного управления. При ручном регулировании человек-оператор, наблюдая за показаниями датчиков, мысленно сравнивает их с заданными значениями, т.е. определяет величину ошибки регулирования и, исходя из этого, решает, какие действия предпринимать.


ХХ Классификация САР

1 По назначению (по характеру изменения задания):

· стабилизирующая САР - система, алгоритм функционирования которой содержит предписание поддерживать регулируемую величину на постоянном значении (x = const);

· программная САР - система, алгоритм функционирования которой содержит предписание изменять регулируемую величину в соответствии с заранее заданной функцией (x изменяется программно, например, как функция времени);

· следящая САР - система, алгоритм функционирования которой содержит предписание изменять регулируемую величину в зависимости от заранее неизвестной величины на входе САР (x изменяется произвольно).

2 По количеству контуров:

· одноконтурные - содержащие один контур регулирования (одну обратную связь по регулируемому параметру),

· многоконтурные - содержащие несколько контуров регулирования (несколько обратных связей, например, по нескольким параметрам, по скорости/ускорению изменения параметра и т.д.).

3 По числу регулируемых величин:

· одномерные - системы с 1 регулируемой величиной,

· многомерные - системы с несколькими регулируемыми величинами.

Многомерные САР в свою очередь подразделяются на системы:

а) несвязанного регулирования, в которых регуляторы непосредственно не связаны и могут взаимодействовать только через общий для них объект управления;

б) связанного регулирования, в которых регуляторы различных параметров одного и того же технологического процесса связаны между собой вне объекта регулирования.

4 По функциональному назначению:

САР температуры, давления, расхода, уровня, напряжения и т.д.

5 По характеру используемых для управления сигналов:

· непрерывные,

· дискретные (релейные, импульсные, цифровые).

6 По характеру математических соотношений:

· линейные, для которых справедлив принцип суперпозиции;

· нелинейные.

Примечание - Если на вход объекта подается несколько входных воздействий, то реакция объекта на сумму входных воздействий равна сумме реакций объекта на каждое воздействие в отдельности:

L(х1 + х2) = L(х1) + L(х2),

где L - линейная функция (интегрирование, дифференцирование и т.д.).

Данный принцип называется принципом суперпозиции (наложения).

7 По виду используемой для регулирования энергии:

· пневматические,

· гидравлические,

· электрические,

· механические и др.



2018-06-29 470 Обсуждений (0)
Основные термины и определения 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные термины и определения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (470)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)