Мегаобучалка Главная | О нас | Обратная связь


Ввод информации с клавиатуры средствами BIOS



2018-06-29 1282 Обсуждений (0)
Ввод информации с клавиатуры средствами BIOS 0.00 из 5.00 0 оценок




Интерфейсом программ в персональном компьютере с клавиатурой является прерывание 16h BIOS. Далее приводится описание его функций.

АН = 00h - чтение с ожиданием двухбайтового кода из буфера клавиатуры. Прочитанный код возвращается в регистре АХ: младший байт - в регистре AL, старший - в АН. Если нажата ASCII-клавиша, в AL помещается ASCII-код символа, в АН - скэн-код. При нажатии специальных клавиш AL равен 0, а в АН возвращается расширенный скэн-код.

АН = 0lh - чтение без ожидания двухбайтового кода из буфера клавиатуры. Если буфер пуст, в 1 выставляется флаг нуля ZF. В противном случае в АХ возвращается двухбайтовый код из буфера клавиатуры, но продвижение указателя "головы" буфера не производится, т.е. код "остается" в буфере.

АН = 02h - определение состояния шифт- и триггерных клавиш. В регистре AL возвращается содержимое байта по адресу 40:17h (см. табл. 4.1).

Функция АН = 05h не имеет аналогов в библиотеке Turbo С и может использоваться для имитации нажатии клавиш в демонстрационных программах, программах переноса текста и т.д.

Функции АН = 10 - 12h являются аналогами функций 00 - 02h, но предназначены для использования в компьютерах с клавиатурой 101 /102 клавиши.

Функции АН = 00 - 02h прерывания 16h BIOS положены в основу функции bioskey() библиотеки Turbo С. Далее следует описание этой функции.

 

int bioskey(int cmd)

 

Обращается в зависимости от значения в cmd к функциям АН = 00 - 02h прерывания 16h. Возвращаемое функцией значение повторяет значение регистра АХ при выходе из прерывания.

 

Предварительная подготовка к работе

1.Ознакомиться с аппаратными средствами компьютера для ввода информации с клавиатуры.

2. Ознакомиться с программными средствами для ввода информации с клавиатуры.

Порядок выполнения работы

1. Разработать, написать и отладить программу управления пе­ремещением символа (например, "*") в пределах заданного на экране окна.

Таблица 4.2. Варианты заданий

№ варианта     X1   Y1     X2   Y2   Вид движения Клавиши управления     Номер прерывания
Постоянное СтВВ, СтВН INT 21h
Пошаговое СтВП, СтВЛ INT 21h
Постоянное F1, F2 INT 21h
Пошаговое Все направления INT 21h
Постоянное F5, F6 INT 16h
Пошаговое F1-F4 INT 16h
Постоянное F9-F12 INT 16h
Пошаговое СтВВ, СтВН INT 16h
Постоянное СтВП, СтВЛ INT 21h
Пошаговое Все направления INT 21h
Постоянное F3, F4 INT 21h
Пошаговое F7, F8 INT 21h
Постоянное СтВВ, СтВН INT 16h
Пошаговое СтВП, СтВЛ INT 16h
Постоянное F9, F10 INT 16h
Пошаговое F11, F12 INT 16h
Постоянное СтВВ, СтВН INT 21h
Пошаговое СтВП, СтВЛ INT 21h
Постоянное F5, F10 INT 21h
Пошаговое F6, F12 INT 21h
                         

 

Для управления использовать клавиши из набора: "стрелка вверх" (СтВВ), "стрелка вниз" (СтВН), "стрелка вправо" (СтВП), "стрелка влево" (СтВЛ) или функциональные клавиши Fl - F12 (варианты см. в таблице 4.2). Для ввода использовать стандартные функции языка C++. Сохранить отлаженную программу.

2. Изменить программу, заменив стандартные функции библиотеки C++ своими. Для написания функций используйте заданное прерывание (см. табл. 4.2), если его возможностей достаточно. Если его возможностей не достаточно, то замените его по своему усмотрению. Сохраните отлаженную программу.

3. Отлаженные программы предъявить преподавателю.

Содержание отчета

1. Краткие сведения о подсистеме ввода информации с клавиатуры, используемых прерываниях, буфере клавиатуры и функциях обслуживания ввода с клавиатуры.

2. Алгоритмы и тексты отлаженных программ.

3. Выводы.

 

4.8. Контрольные вопросы

1. Что относится к устройствам ввода информации в ЭВМ?

2. Как можно классифицировать устройства ввода?

3. Назовите основные характеристики устройств ввода информации.

4. Зачем нужен буфер клавиатуры?

5. Почему существует ввод с буферизацией и без нее?

6. Какие бывают прерывания?

7. Зачем для ввода данных с клавиатуры используют прерывания?

8. Какое прерывание вырабатывается при нажатии клавиши?

9. Назовите основные характеристики системы прерываний.

10. Почему нужны программные прерывания?

11. Почему для организации ввода с клавиатуры используются два программных прерывания INT 21h и INT 16h?

12. Какие функции библиотеки C++ для ввода с клавиатуры Вы знаете?

13. Какие функции прерывания INT 16h Вы знаете?

14. Какие функции прерывания INT 21h Вы знаете?

15. Можно ли в прикладной программе обойтись без ввода с клавиатуры?

 

Лабораторная работа 5.

ИСПОЛЬЗОВАНИЕ АППАРАТНЫХ ПРЕРЫВАНИЙ

Цель работы – знакомство с различного вида аппаратными прерываниями и создание собственных подпрограмм обработки прерываний.

Общие положения

Микропроцессоры 8086/88 поддерживают механизм прерываний. В самом общем виде это наличие в аппаратуре специальных средств, с помощью которых выполнение текущей программы приостанавливается и процессор переходит к так называемой программе обслуживания прерывания (Interrupt Servise Routine - ISR). Механизм прерываний позволяет организовать выполнение тех или иных функций ядра и быструю реакцию процессора на возникновение каких-то внешних со­бытий: ошибок в арифметических операциях, изменению состояния пе­риферийных устройств и пр.

Микропроцессоры 8086/88 поддерживают 256 прерываний. Каждое из них имеет свой номер и ISR. Адрес точки входа в ISR называется вектором прерывания и хранится в специальной таблице, называемой таблицей векторов прерывания (ТВП). Код ISR может располагаться в любом месте памяти. Поэтому вектор прерывания занимает 4 байта: 2 байта отво­дится на значение сегментного регистра, устанавливаемое в CS (старшее слово), 2 байта - на значение смещения, уста­навливаемое в IP (младшее слово). Вся ТВП занимает 256 * 4 = 1024 байт и располагается в оперативной памяти, начиная с адреса 0000:0000.

При возникновении прерывания процессор помешает в стек 6 байт: текущее значение CS, текущее значение IP (пара этих регистров определяет точку, с которой выполнение прерываемой программы возобновится), а также 2 байта флагов процессора. В CS и IP устанавливаются значения из ТВП, которые задают адрес начала ISR. Прерыванию 0 соответствует вектор прерывания по адресу 0000:0000, прерыванию 1 - по адресу 0000:0004h, прерыванию 2 - по адресу 0000:0008h и т.д.

Сама ISR - это программа, построенная с соблюдением специальных правил:

1) в самом начале она сохраняет в стеке все регистры процессора, которые будут использоваться в этой программе;

2) перед завершением работы программы значения регистров восстанавли­ваются;

3) последней инструкцией ISR, как правило, является инструкция возврата из прерывания IRET. Выполняя IRET, процессор извлекает из стека шесть слов информации, которые последовательно помещает в регистры IP, CS и регистр фла­гов, возвращаясь к исполнению прерванной программы.

Часто обработчикам программных прерываний требуется передать какие-то значения, задающие конкретное действие, характеристики ситуации и т.п., и получить какие-то результаты по завершению исполнения ISR. Для такого обмена данными используются внутренние регистры процессора.

Некоторые векторы прерывания в ТВП на самом деле задают не точки входа в ISR, а используются для хранения важной системной информации: адресов данных и таблиц. Кроме того, за некоторые векторы "зацеплены" ISR, не выполняющие никаких действий. Они служат заглушками для подключения дополнительных обработчиков. Так, например, в нормальном состоянии обработчик прерывания 1Ch не выполняет никаких действий и содержит единственную инструкцию возврата из прерывания IRET. Прерывание 1Ch вызывается из пределов ISR таймера (обработчик прерывания 8). Прерывание от таймера, в свою очередь, генерируется 18.2 раза в секунду аппаратурой системного таймера. Есть и другие обработчики - заглушки, вызываемые при функционировании ISR BIOS и MS-DOS.

 

Аппаратные прерывания

В процессе функционирования персонального компьютера могут встретиться четыре типа прерываний:

1) аппаратные;

2) программные;

3) исключительные ситуации процессора (processor exceptions);

4) немаскируемые.

 

Аппаратные прерывания возникают как результат некоторых внешних событий и в их генерации принимает участие специальная микросхема персонального компьютера - программируемый контроллер прерываний, или PIC (Programmable Interrupt Controller). Наиболее часто для этих целей используется одна или несколько микросхем 8259А либо их функциональные эквиваленты. В архитектуре компьютеры IBM PC AT используют PIC, построенный на двух микросхемах 8259А (рис. 5.1).

Микросхема 8259А рассчитана на 8 входов запросов прерываний, обозначаемых IRQ (Interrupt Request). Сигналы на них возбуждают внешние устройства: адаптеры асинхронной последовательной и параллельной связи, плата системного таймера и др. Контроллер прерываний имеет в своем составе ряд программируемых внутренних регистров, определяющих особенности обработки запросов прерываний.

 

Рис 5.1. Двухкаскадная схема построения

контроллера прерываний

 

Выход ведущей (единственной в однокаскадной схеме) микросхемы 8259А контроллера прерываний подается на специальный вход процессора (INTR). Этот вход процессора является маскируемым: если флаг маскирования прерываний IF равен единице, процессор способен "ощущать" изменение состояния линии INTR (прерывания разрешены); если же IF сброшен в 0, изменения на линии INTR не влияют на работу центрального процессора. Поэтому часто аппаратные преры­вания, в формировании которых принимает участие PIC, называют маскируемыми. Если прерывания разрешены и устанавливается высокий потенциал на линии INTR, процессор завершает исполнение текущей инструкции и отвечает двумя циклами сигнала INTA.

Первый цикл сигнала INTA - это, по существу, пустой цикл, который готовит PIC к следующему циклу. Во время второго цикла PIC помещает на шину данных байт, задающий номер аппаратного прерывания. Получив байт номера прерывания, процессор умножает его на 4, формируя смещения до вектора прерываний в ТВП.

Процессор сохраняет в стеке текущее значение регистров флагов CS и IP, затем устанавливает в 0 флаг IF, а в CS и IP - значения из вектора прерывания. В результате управление передается в ISR.

Для того чтобы различать сигналы прерываний от различных внешних устройств, система прерываний IBM PC построена следующим образом. Каждое внешнее устройство подключено к собственной линии запроса прерываний IRQ. При получении сигнала на линии IRQ контроллер прерываний передает в процессор уникальный для данной IRQ байт номера прерывания. Соответствие линий IRQ и номеров прерывания задается программированием контроллера прерываний. Такое программирование выполняется в ходе начальной загрузки системы специальной процедурой BlOSa и в дальнейшем обычно не изменяется. В принципе, перепрограммирование PIC может выполняться в любой момент и некоторые программы (Windows, OS/2) используют это при своей загрузке. В ходе программирования PIC задаются старшие 5 бит номера прерывания, а младшие 3 бита генерирует микросхема 8259А, определяя двоичный код номера линии IRQ. Ведущая (единственная) микросхема программируется BIOSом так, чтобы передавать в процессор прерывания от 08h до 0Fh. Ведомая 8259А в IBM PC AT настраивается на передачу номеров прерываний от 70h до 77h.

Кроме отображения IRQ на номера прерывания, PIC выполняет упорядочивание по приоритету одновременно возникающих запросов. Обычно наивысший приоритет имеет запрос на линии IRQ0, затем в порядке убывания IRQI, IRQ2, ..., IRQ7. Вход процессора INTR является так называемым "уровнем чувствительным". Это значит, что если процессор ощущает высокий уровень, он всегда начинает цикл обработки прерывания. Если начатая ISR устанавливает IF в единицу (а это, как правило, так и бывает), сохранение сигнала на линии INTR вызовет повторное вхождение в ту же самую ISR, a затем вхождение в третий, четвертый и далее раз до тех пор, пока не переполнится стек. Для того чтобы этого не происходило, контроллер прерываний блокирует генерацию сигнала INTR для текущей активной линии IRQ до тех пор, пока исполняемая ISR не даст явного указания сделать это. Обычно так ISR обозначают свое завершение, посылая в PIC команду завершения прерывания, или EOI (End Of Interrupt). Если ISR не сделает этого, контроллер продолжает блокировать выработку сигнала INTR для всех последующих запросов прерывания как по данной линии, так и по другим, менее приоритетным линиям.

Любая из линий запросов IRQi может быть маскирована. Специальный внутренний регистр PIC хранит битовую маску входов IRQi: бит 0 регистра маски управляет IRQ0 (IRQ8 в ведомой микросхеме 8259А), бит 1 - IRQI (IRQ9), ..., бит 7 - IRQ7 (IRQ15). Если бит равен нулю контроллер генерирует сигнал на линии INTR, если бит равен единице, контроллер не "чувствует" запрос на маскированной битом линии IRQi.

Использование двухкаскадной схемы для построения контроллера прерываний расширяет до 15 чисто обслуживаемых внешних устройств. Для двухкаскадной схемы выход INTR ведомой микросхемы 8259А подается на линию LRQ2 ведущей микросхемы. В результате линии запросов упорядочиваются по приоритету следующим образом: максимальный приоритет имеет IRQ0, затем в порядке убывания IRQI, IRQ8, ..., IRQ15, IRQ3, ..., IRQ7. Как правило, PIC в ходе начальной загрузки настраивается так, что для линий IRQ0 - IRQ7 генерируются прерывания с номерами 08h - 0Fh соответственно, а для линий IRQ8 - IRQ15 - прерывания с номерами 70h - 77h. Подключение внешних устройств персональных компьютеров к линиям IRQ и, следовательно, закрепление аппаратных пре­рываний для большинства персональных компьютеров типа IBM PC фактически стандартизовано. В табл. 5.1 приводится закрепление внешних устройств и аппаратных прерываний для IBM PC AT.

 

Таблица5.1. Использование прерываний в IBM PC AT

Линия запроса прерывания Номер прерывания Обычное использование
IRQO 8h Системный таймер
IRQ1 9h Клавиатура
IRQ2 0Ah Переадресация от ведомой 8259А
IRQ3 0Bh COM2 (или COM4)
IRQ4 0Ch СОМ1 (или COM3)
IRQ5 0Dh LPT2
IRQ6 0Eh Контроллер накопителей на гибком диске
IRQ7 0Fh LPT1
IRQ8 70h Таймер реального времени
IRQ9 71h Прерывание обратного хода луча EGA- и VGA-адаптера  
IRQ 10 72h Свободно
IRQ11 73h Свободно
IRQ12 74h Свободно
IRQ13 75h Сопроцессор математики с плавающей точкой
IRQ 14 76h Контроллер накопителя на жестком диске
IRQ 15 77h Свободно


2018-06-29 1282 Обсуждений (0)
Ввод информации с клавиатуры средствами BIOS 0.00 из 5.00 0 оценок









Обсуждение в статье: Ввод информации с клавиатуры средствами BIOS

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1282)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)