Мегаобучалка Главная | О нас | Обратная связь


Потенциальная и кинетическая составляющие массы



2019-05-24 209 Обсуждений (0)
Потенциальная и кинетическая составляющие массы 0.00 из 5.00 0 оценок




 

Предположение того, что пространственно-временной континуум и есть масса, весьма необычно и требует веской аргументации. Один из моих оппонентов, по этому поводу язвительно сказал: «Масса в массе!?». Но, делая такое замечание, он, сам того не подозревая, оказался не далеко от истины. Я же, предполагаю, что элементарный объем и есть элемент массы, как имеющий пространственно-временной критерий мерности. Одновременно, это утверждение подчеркивает единую основу пространства и материи. Однако, мы знаем, что материальные предметы могут по известным законам перемещаться в пространстве и как, в этом случае, можно сделать удовлетворительное объяснение с заявленной позиции.

В предыдущей статье, я представлял образ создающейся массы, как показано на рисунке 7.

 

Рис. 7

 

Здесь внешняя граница пространства – это условное обозначение неопределенности, а прямолинейные отрезки – границы между взаимодействующими элементарными объемами. Различная величина пространственной метрики свидетельствует о неодинаковости времени возникновения каждого из элементарных объемов. Эта неодинаковость, обусловленная одномерностью времени, может быть выражена величиной пространственной метрики, обозначающей временную разницу возникновения того или иного объема относительно друг друга.

Если бытие любого из элементарных объемов представляет собою равномерную череду элементарных событий, начиная от первоначального, то это чередование представляет собою известные гармонические колебания пространственной метрики. Временные интервалы между соответствующими точками пространственной метрики, соответствующие периоду колебания одинаковы и их чередование представляют собою пространственно-временную фазу этих колебаний. В этом случае, последовательная неодновременность возникновения элементарных объемов может быть отражена сдвигом фаз на подобии того, который происходит в трехфазном электрическом токе. Проще говоря, если за систему отсчета выбрать один из элементарных объемов, то относительная величина пространственной метрики других объемов описывается сдвигом пространственно-временной фазы.

Как отмечалось выше, сила – это реакция на отклонение пространственной метрики элементарного события от некоторого потенциального значения, то, в этом случае, можно представить себе, какие колоссальные силы должны возникать между точками связи, например в ситуации, которая условно изображена на рисунке 7. Но величина силы это не единственный показатель, по которому можно строить предположения о дальнейших событиях, происходящих в нарождающейся массе.

Пространственная метрика любого элементарного события не может изменяться без адекватного изменения временной по единому закону для всех событий в силу того, что процесс создания расстояния един для всех и осуществляется с конечной скоростью. Но в массе элементарных объемов могут возникнуть такие моменты, когда изменяемая пространственная метрика одного элементарного объема оказывается в противодействии с изменяемой аналогичной метрикой других объемов. Иначе говоря, появляется группа элементарных объемов направление изменения пространственной метрики которых противоречит противоположному направлению объема или группе объемов, находящихся внутри первых. Что же, в этом случае может произойти?

Мы знаем, что любой твердый предмет является таковым потому, что он является следствием баланса внутренних и внешних сил. Также нам известно, что два предмета, воздействуя между собой посредством третьего, могут взаимно изменяют свое пространственное положение, например, когда тягач с помощью троса тянет неисправный автомобиль. В этой ситуации точка приложения силы тяги посредством внутренних сил троса, практически без изменения перемещается от одного конца этого троса к другому. Это обстоятельство позволило мне предположить то, что силовое замыкание разномоментных элементарных объемов завершается выравниванием противодействующих сил с одновременным изменением пространственно-временных фаз этих объемов. Другими словами, сдвиг пространственно-временных фаз разномоментных элементарных объемов стремиться к выравниванию, а сами фазы этих объемов, при этом, начинают перемещаться с некоторой скоростью относительно пространственной метрики одного объема к другому.

Следовательно, в случае нарушения естественного хода элементарного события и появления соответствующей реакции, для сохранения естественного хода этого элементарного события пространственно-временная фаза может перемещаться относительно пространственной метрики взаимодействующих элементарных объемов таким образом, при котором эта пространственная метрика не изменяется. Очевидно, что может происходить и обратный процесс. Словом, конечность скорости совершения элементарного события не нарушиться, если перемещается не пространственная метрика, а источник образования такой метрики относительно её самой. В этом и проявляется фундаментальный смысл относительности.

После образования первого элементарного объема, как события, последующими событиями образуется масса и упорядочиваются сдвиги фаз таким образом, что эти сдвиги стремиться к минимальному значению, что, в свою очередь, приведет к относительному выравниванию размеров пространственной метрики взаимодействующих объемов. Но в этом случае, сама пространственно-временная фаза начинает свое относительное перемещение от объема к объему. То есть, неравномерное силовое замыкание уже между самими элементарными объемами так влияют на пространственно-временную фазу этих объемов, что её величина становиться функцией перемещения относительно пространственной метрики в определенном направлении при условии, что сдвиг фаз между соседними элементарными объемами стремиться к минимальному значению. В этом случае, пространственная метрика всех элементов нарождающейся массы стремиться к некоторому постоянному значению, а пространственно-временные фазы этих элементов или элементарных объемов перемещаются относительно пространственной метрики этих объемов строго в определенных направлениях. Образ такого состояния массы можно примерно представить, как показано на рисунке 8, где направление перемещение фаз условно показано стрелками.

 

Рис. 8

 

Хаотичное перемещение фаз элементарных объемов является нестабильным состоянием нарождающейся массы, так как, не смотря на огромное количество разнообразных направлений фаз, наступит такой момент, когда направления определенного количества перемещающихся пространственно-временных фаз окажутся ориентированным на одну точку. Выражаясь образно про ситуацию, возникшую с элементарными объемами, отраженную на рисунке 8, можно сказать, что между этими объемами как бы существует некоторое взаимное соглашение – фаз одного объема пропускается в ту или иную сторону взамен согласованной уступки со стороны всех объемов. Но это состояние недолговременно, так как, рано или поздно, эта неопределенность сменится устойчивостью, когда фазы всех элементарных объемов распределяться на группы, в которых все направления окажутся ориентированными на единые центры. Здесь, продолжая образную речь, достичь взаимной уступчивости объемов не удастся, а положение фаз будет примерно таким, как показано на рисунке 9.

 

Рис. 9

 

Почему направления перемещения фаз являются определенными? Это обстоятельство объективно по причине уникальности каждого элементарного объема по времени появления. То есть, нет двух объемов, имеющих одинаковое время появления. Из этого следует, что если даже элементы массы будут как-то влиять на направление перемещения фаз, то из-за неповторимости каждого элементарного объема, направления перемещения также уникальны и их относительные устремления в целом неизменны. Потому, масса, начав свое бытие, обречена на разделение своих элементов на определенные группы, направление перемещения фаз которых стремиться к определенному центру. В тоже время, сами центры групп центростремительных фаз осуществляют относительное перемещения между собой. А что же происходит с метрикой элементарных объемов, перемещения пространственно-временные фаз которых ориентированы на один центр?

Несомненно, что пространственная метрика сгруппированных по указанному признаку объемов начинает изменяться в соответствии с фазовыми колебаниями пространственной метрики каждого объема. Однако, из-за неповторимости фазы каждого объема, расширение и последующее сжатие пространственной метрики объемов будут происходить в строгой последовательности друг за другом по определенной схеме или порядку. Этот порядок будет устанавливаться из условия, что пространственная метрика сгруппированных элементарных объемов формируется таким образом, чтобы сдвиг фаз между объемами был наименьшим. Этот способ группирования объемов и образования в соответствии с этим пространственной метрики мне представляется в том виде, когда пространственная метрика сгруппированных объемов имеет центрально-симметричную структуру: исходное (первоначальное) состояния пространственной метрики находиться в центре, от которого в радиальных направлениях метрика изменяется до некоторого максимального значения. На плоскости пространственную метрику таких объемов можно изобразить, как показано на рисунке 10.

В сгруппированных вокруг единого центра элементарных объемах пространственная метрика формируется из условия минимальности сдвига фаз, а сами фазы последовательно перемещаются от объема к объему, начиная от центра и до максимального значения расширения пространственной метрики, а, затем, в обратной последовательности.


Рис. 10

 

Таким образом, перемещения пространственно-временных фаз относительно пространственной метрики элементов массы приобретает двойственное состояние: с одной стороны, фазы линейно перемещаются вместе с центром группировки элементарных объемов, а, с другой стороны, движутся по сложной криволинейной траектории внутри самого центра. В этой связи, можно предположить, что в след за образованием массы, происходит такое формирование пространственной метрики и появляется такое перемещение пространственно-временных фаз относительно этой метрики, при которых масса разделяется на две взаимовлияющие составляющие: статическую и подвижную. Теперь, несколько подробнее об этом.

Статическая часть массы – это центрально-симметричная группировка элементарных объемов, как элементов массы, позволяющая реализовывать ход элементарных событий в виде перемещения пространственно-временных фаз относительно неподвижной пространственной метрики. При этом, пространственная метрика формируется так, что сдвиг фаз между объемами будет минимальным. Другими словами, каждый элементарный объем массы, имеющий только ему присущую пространственно-временную фазу, в статической части массы занимает такое пространственное расположение, что и его пространственная метрика, а также метрика других объемов позволяет реализовывать полный цикл изменения собственных элементарных событий и аналогичные циклы других. В этом смысле, пространственная метрика центрально-симметричной группировки элементарных объемов представляет собою конструкцию, где часть элементарных объемов будет находиться в сжатом состоянии, на много меньшем своего потенциального значения. Но это состояние обусловлено естественным течением элементарных событий, которые в свою очередь, создали соответствующую пространственную метрику. В таком случае, пространственную центрально-симметричную группировку элементов массы необходимо рассматривать, как потенциально возможную к расширению. Поэтому статическая часть массы является её потенциальной частью.

Образ подвижной части массы, после понимания потенциальной части, воспринимается легче, так как пространственная метрика этой части массы является, как бы основой для потенциальной. Иными словами, пространственная метрика подвижной части массы на деле не является подвижной, но служит основой для передвижения пространственно-временных фаз элементарных объемов, сгруппированных в потенциальной части массы. В этом смысле, подвижная часть массы представляет собой некоторую инерциальную систему, обеспечивающую перемещение потенциальных частей массы относительно друг друга. В таком случае, подвижную часть массы необходимо рассматривать как среду, где обеспечивается перемещение, или как кинетическую часть массы.

Теперь, массу можно рассматривать, как пространственно-временной континуум, пространственная метрика которого, с одной стороны представляет сплошную неподвижную массу, с другой стороны, каждый элемент этой массы постоянно изменяется в соответствии с образовавшейся потенциальной составляющей её и перемещения этих составляющих относительно друг друга в кинетической составляющей массы. Образование потенциальной и кинетической составляющих массы – это промежуточное событие в череде событий бытия. Следующим значительным событием бытия является создание вещества.


Масса и вещество

 

Развивая логику свершения событий бытия, основанную на понимании элементарного объема, как первоначального события, у нас появляется возможность иного представлении о материи и её основе – веществе. С этой целью рассмотрим подробнее потенциальную и кинетическую составляющие массы.

В предыдущей главе, говоря о структуре пространственной метрики массы, имелось в виду, что эта метрика представляет собою, с одной стороны, некоторую сплошную среду, состоящую из одинаковых по природе элементов, а с другой стороны, изменения этой пространственной метрики определяется потенциальной и кинетической составляющими массы.

В свою очередь, эти составляющие массы возникли по причине упорядочивания перемещения пространственно-временных фаз каждого элементарного объема относительно пространственной метрики. Принцип перемещения фаз понятен, но для понимания хода дальнейших событий бытия, необходимо иметь представление о таком перемещении, например, в потенциальной составляющей массы.

Попробуем представить себе, как изменяется пространственная метрика массы при изменении положения пространственно-временной фазы одного из элементарных объемов, при совершении одного периода колебания элементарных событий. Другими словами, мы должны понять, как может быть осуществлено перемещение фазы последовательно от центрального объема, по всем другим и, в той же последовательности, обратно. Задача не простая, поскольку мы должны мысленно уложить несколько сферических объемов, изменяющий свой размер циклически в некоторый центрально-симметричный объем. То есть, этот объем, при его развертывании на составляющие элементарные объемы, должно состоять из замкнутой цепи сомкнутых объемов, условно показанной на рисунке 11.


Рис. 11

 

Пространственно-временные фазы каждого из объемов цепи, при полном цикле (периоде) изменения элементарных событий этих объемов, перемещаются по цепи от начала, до максимума и обратно. Составить образное перемещение фаз по цепи не сложно, но как такое перемещение представить, если эта цепь уложена в виде центрально-симметричного объема?

Единственно-возможным вариантом. в этом случае, представляется сложное объемное перемещение при сочетании линейного движения и движения вращения. Образно такое движение представлено на рисунке 12 а).

 

а)                              б)                    в)

Рис. 12

 

Здесь, некоторая плоскость А, перпендикулярная, например оси Х, пространственной трехмерной системы измерения XYZ, вращается, в данном случае, относительно оси Y. Несомненно, закрепление плоскости и её относительное вращение в некоторой системе координат выбрано произвольно, так же, как выбрано произвольно направление вращение самой плоскости. Это построение позволяет понять траекторию перемещения пространственно-временной фазы от центра потенциальной составляющей массы. Из точки О по винтовой траектории S, лежащей в плоскости А, осуществляется перемещение фазы. Одновременно с этим, винтовая траектория вращается с плоскостью А.

Если по ходу движения фазы, начиная от точки О, фиксировать равные расстояния до момента максимального значения, то в пространстве эти точки будут строить половинку центрально-симметричного объема, сечением которого и будет плоскость А, как условно показано на рисунке 12 б).

В положении, когда фаза достигает максимально-возможного состояния пространственной метрики, она по винтовой траектории возвращается к исходу в точку О, но на сей раз, эта винтовая траектория, как бы, лежит на другой стороне плоскости А. В таком случае, с обратной стороны плоскости достраивается вторая половина центрально-симметричного объема. Не смотря на то, что величина пространственной метрики обоих полушарий должна быть одинакова, отличием, все же, является то, что при движении фазы от начала происходит расширение пространственной метрики массы, а при движении фазы обратно – сжатие этой метрики, как условно показано на рисунке 12 в).

Направление расширения и сжатия пространственной метрики является решающим фактором для относительного перемещения потенциальных составляющих массы в кинетической. Ранее было отмечено, что пространственно-временная фаза осуществляет двойственное перемещение относительно пространственной метрики массы. Рассмотрев возможный вариант перемещения фазы в потенциальной составляющей массы, можно понять, как осуществляется перемещение фазы вместе с потенциальной составляющей массы в её кинетической.

На рисунке 12 в), на плоскость А мы смотрим с её торца. Теперь, если мысленно представить, что пространственно-временная фаза перемещаясь в кинетической части массы, стремиться расширить или сжать эту метрику в зависимости от цикла элементарного события. Но «реализовать» свое стремление к сжатию или расширению метрики она может только в потенциальной части массы. В этом случае, фазы, сжимающие пространственную метрику, «входят» в потенциальную часть массы со стороны сжатия, в противном случае, наоборот. Потенциальная составляющая массы перемещается в кинетической по направлению от расширения пространственной метрики массы к её сжатию (направление S – рисунок 12 в). Таким образом, осуществляется единство кинетической и потенциальной составляющих массы.

Однако, у потенциальной составляющей массы, изображенной на рисунке 12, есть одно обстоятельство, не позволяющей ей осуществлять перемещение вслед за изменениями в кинетической составляющей массы. Это обстоятельство заключается в том, что оси вращения винтовой траектории и плоскости пересекаются в одной точке. Такая потенциальная составляющая массы, центрально-симметричная не только по форме пространственной метрике, но и по вращению. Вместе с этой составляющей массы будет вращаться зона сжатия и расширения относительно единой точки. В этом случае, направление движение потенциальной составляющей массы в её кинетической будет постоянно изменяться, а в месте с этим, потенциальная составляющая массы не сможет перемещаться в сторону сжатия пространственной метрики массы. Поэтому, вокруг такой составляющей потенциальной массы будет постоянно перемещаться две одинаковых пространственных зоны, в одной из которых осуществляется расширение пространственной метрики, а в другой – сжатие. Несомненно, что вслед за этими зонами, также будет изменяться пространственная метрика кинетической составляющей массы, которая, в свою очередь, будет влиять на перемещение фаз элементов массы. Это состояние вращающейся центрально-симметричной потенциальной составляющей массы можно сравнить с вращающимся магнитом, вслед за полюсами которых увлекаются или отталкиваются другие магниты.

Из этого рассуждения следует, что центрально-симметричная составляющая потенциальной массы создает вокруг себя двухполярное поле одновременно притяжения и отталкивания относительно центра вращения. В виду того, что эта составляющая массы не сможет двигаться в ту или иную сторону, то пространственно-временная фаза кинетической составляющей массы будет каждый раз искривлять пространственную метрику, как реакция на изменение естественного течения элементарных событий. Примерно, изображение такого расширения и сжатия пространственной метрики можно сравнить с изображением на рисунке 12 в).

Появление центрально-симметричной потенциальной составляющей массы означает появление источника искривления пространственной метрики как в самой этой составляющей, так и кинетической, окружающей её. Несомненно, что это искривление пространственной метрики скажется на другие потенциальные составляющие массы тем, что искривления будут источниками ускорения и сближения зонами сжатия, или отталкивания зонами расширения.

Если ещё раз обратить свое внимание на потенциальную составляющую массы, изображенную на рисунке 12 а), то можно сказать, что у этой конструкции есть ещё один вариант. Речь идет о том, что вращение плоскости А относительно оси Y можно осуществлять и тогда, когда ось Y находиться в точке О1 на некотором удалении от плоскости А, как показано на рисунке 13 а).

 

а)                                                          б)

Рис. 13

 

При направлении вращения винтовой траектории и вращении плоскости А, как показано на рисунке 13 а), создастся искривление пространственной метрики таким образом, как показано на рисунке 13 б). В этом случае, такая потенциальная составляющая массы будет ассиметрична по конструкции, а искривление пространственной метрики будет всегда ориентировано в сторону сжатия по направлению к центру вращения плоскости А. Другими словами, такая потенциальная составляющая массы будет стремиться в сторону смещенного центра О1.

Теперь, если сравнить симметричную и ассиметричную потенциальные составляющие массы, можно с уверенностью утверждать, что это две взаимоуравнивающие конструкции. Действительно, если две противоположные потенциальные составляющие массы сближаются друг с другом, то появляется третья конструкция, которая становиться нейтральной по отношению к кинетической составляющей массы. Иными словами, все «огрехи» пространственной метрики той или иной потенциальной составляющей массы, устраняются взаимным сближением симметричной и асимметричной её конструкциями. Полного сближения этих двух составляющих не произойдет, так как они относятся к разным составляющим массы.

Анализируя ход событий бытия, можно утверждать, что после появления кинетической и потенциальной составляющих массы, следующим шагом окажется событие, связанное с появлением двойной конструкции потенциальной составляющей массы, две части которой являются неразрывными по сути своего появления – симметричная конструкция потенциальной составляющей массы создает предпосылку для асимметричной, а по всей видимости возможно, что и на оборот. Другими словами, сколько возникнет симметричных потенциальных составляющих массы, столько же и асимметричных.

По своей сути, потенциальные составляющие массы – это две фундаментальные частицы материи, составляющие атом вещества. При этом, симметричная конструкция потенциальной составляющей массы – это ядро атома, а противоположная, асимметричная конструкция – это электрон. Очевидно, что с точки зрения элементарного объема, представление об атоме вещества, мягко говоря, не совсем похоже на традиционное воззрение. Но, как мы увидим далее, именно такое воззрение на природу вещей позволяет спрогнозировать ход дальнейших событий бытия, а, следовательно, и понять многие загадки мироздания.

 



2019-05-24 209 Обсуждений (0)
Потенциальная и кинетическая составляющие массы 0.00 из 5.00 0 оценок









Обсуждение в статье: Потенциальная и кинетическая составляющие массы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (209)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)