Биссектриса прямоугольного треугольника
1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:
L - биссектриса, отрезок ME , исходящий из прямого угла (90 град) a, b - катеты прямоугольного треугольника с - гипотенуза α - угол прилежащий к гипотенузе
Формула длины биссектрисы через катеты, ( L):
Формула длины биссектрисы через гипотенузу и угол, ( L):
2. Найти по формулам длину биссектрисы из острого угла на катет:
L - биссектриса, отрезок ME , исходящий из острого угла a, b - катеты прямоугольного треугольника с - гипотенуза α , β - углы прилежащие к гипотенузе
Формулы длины биссектрисы через катет и угол, (L):
Формула длины биссектрисы через катет и гипотенузу, (L):
Длина биссектрисы равнобедренного треугольника L - высота = биссектриса = медиана a - одинаковые стороны треугольника b - основание α - равные углы при основании β - угол образованный равными сторонами
Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):
Формула высоты, биссектрисы и медианы, через стороны, (L):
Найти медиану биссектрису высоту равностороннего треугольника Формула для вычисления высоты = биссектрисы = медианы. В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.
L - высота=биссектриса=медиана a - сторона треугольника
Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):
Найти длину медианы треугольника по формулам Медиана - отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам. Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.
M - медиана, отрезок |AO| c - сторона на которую ложится медиана a, b - стороны треугольника γ - угол CAB
Формула длины медианы через три стороны, (M):
Формула длины медианы через две стороны и угол между ними, (M):
Длина медианы прямоугольного треугольника Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам. Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).
M - медиана R - радиус описанной окружности O - центр описанной окружности с - гипотенуза a, b - катеты α - острый угол CAB
Медиана равна радиусу и половине гипотенузы, (M):
Формула длины через катеты, (M):
Формула длины через катет и острый угол, (M):
Формула длины высоты через сторону и площадь, (H):
Формула длины высоты через стороны и радиус, (H):
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1329)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |