Удаление пассивных ограничений
Перед построением p-множества из системы ограничений должны быть удалены пассивные ограничения. Пассивным будем называть неравенство (п-неравенство), граница которого не является частью границ области Dx, за исключением, может быть, ее отдельной точки. Неравенства, образующие границы Dx, назовем активными (а-неравенства). Чтобы грани не были включены в Dxp, не имея никакого отношения к Dxp, неравенство e1 должно быть удалено из исходной системы ограничений. Условием для исключения неравенства ei ³ 0 из системы является несовместность (или вырожденность) данной системы неравенств при условии ei = 0. Геометрически это означает, что граница ei = 0 неравенства ei ³ 0 не пересекается с областью Dx или имеет одну общую точку. Если граница ei = 0 имеет общую угловую точку с Dx (вырожденность), то с удалением п-неравенства ei ³ 0 эта точка не будет утеряна, так как она входит в границы других неравенств. Помимо заданных m неравенств проверке подлежат и n условий неотрицательности переменных, так как координатные плоскости (оси) также могут входить в границы Dx. В качестве примечания можно отметить, что поскольку п-неравенства (пассивные неравенства) для любой точки x Î Dx будут выполнены, то по мере выявления п-неравенств и введения их в базис они удаляются из с-таблицы. Запишем систему неравенств Dx в форме с-таблицы:
ОП – получен, следовательно ОП – получен, следовательно х2 и e1 – активные ограничения; x1 и e2 – активные ограничения;
из Т2 получаем:
отсюда делаем вывод, что e3 – активное ограничение;
из Т3 получаем:
Опорный план не получен, следовательно e4 – пассивное ограничение.
3.2.Определение p -множества с-методом.
При подготовке решения для ЛПР интерес будет представлять информация обо всем множестве p-оптимальных (эффективных) решений Dxp. Графический метод позволяет сформулировать довольно простой подход к определению множества Dxp. Суть этого подхода в следующем. Решая усеченную задачу линейного программирования, устанавливаем факт существования д-конуса ( Dmax > 0). Поскольку для линейных ЦФ конфигурация д-конуса не зависит от положения его вершины х,, то, помещая ее на границу ei области Dx, решаем усеченную ЗЛП с добавлением ei, соответствующего i-му участку границ Dx. Вырождение д-конуса в точку х, будет признаком p-оптимальности и всех других точек данной грани. С помощью с-метода указанная процедура легко проделывается для пространства любой размерности n. Неудобство указанного метода состоит в том, что потребуется на каждой грани ОДР Dx найти точку х, (по числу граней Dx) сформулировать и решить столько же ЗЛП размера Rxn. Существенно сократить объем вычислений можно путем выбора вершины д-конуса в фиксированной точке х, = (1)n и в нее же параллельно себе перенести грани, составляющие границы Dx Приведенные к точке х, = (1)n приращения d-r и невязки ei запишутся в виде:
где черта сверху у d, e и D означает, что эти величины приведены к точке х, = (1)n. По существу, (8) – ЗЛП размера (R+m)xn (D®max), а ее решение позволит найти все грани, составляющие p-множество Dxp. Составляем с-таблицу, не учитывая пассивные ограничения, т.е e1:
В начале решается усеченная ЗЛП (под чертой):
e1Î Dxp, так как Dmax = 0.
Данный метод построения множества Dxp обладает недостатком, связанным с разрушением области допустимых решений (ОДР) Dx при переносе ее граней в х,. Действительно, вершины области Dx в преобразованной модели никак не отражены, а именно одна из них может составить p-множество в случае его совпадения с оптимальным решением. Такое совпадение возможно, если все ч-критерии достигают максимум на одной вершине. Физически это значит, что они слабопротиворечивы – угол при вершине д-конуса приближается к 180° (градиенты ч-критериев имеют практически совпадающие направления). Данный случай имеет место, если в p-множество не вошла ни одна из граней ОДР Dx. Следовательно, p-множество совпадает с оптимальным решением. Для определения p-множества решается обычная ЗЛП с одним из ч-критериев. Если при этом получено множество оптимальных решений, то решается ЗЛП с другим ч-критерием. Пересечение оптимальных решений и является p-множеством. Для ЛПР указание на то, что некоторая грань ei = eip Î Dxp p-оптимальна, является только обобщенной информацией. 4.Определение альтернативных вариантов многокритериальной задачи Наиболее естественным и разумным решением мк-задачи было бы органическое объединение всех ч-критериев в виде единой ЦФ. Иногда это удается сделать путем создания более общей модели, в которой ч-критерии являются аргументами более общей целевой функции, объединяющей в себе все частные цели операции. На практике этого редко удается достигнуть, что, собственно, и является основной причиной появления проблемы многокритериальности. Однако наиболее распространенный подход к решению проблемы пока остается все-таки один: тем или иным путем свести решение мк-задачи к решению однокритериальной задачи. В основе подхода лежит предположение о существовании некой функции полезности, объединяющей в себе ч-критерии, но которую в явном виде, как правило, получить не удается. Получение наиболее обоснованной «свертки» ч-критериев является предметом исследований нового научного направления, возникшего в связи с проблемой многокритериальности - теории полезности. В данной работе будут рассмотрены некоторые подходы, позволяющие получить варианты решения мк-задач при тех или иных посылках и которые лицо принимающее решение (ЛПР) должно рассматривать как альтернативные при принятии окончательного решения и которые, конечно, должны удовлетворять необходимому условию- p-оптимальности.
Популярное: Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Почему стероиды повышают давление?: Основных причин три... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (232)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |