Аэродинамический расчет воздуховодов
Его проводят с целью определения размеров поперечного сечения участков сети. В системах с механическим побуждением движения воздуха потери давления определяют выбор вентилятора. В этом случае подбор размеров поперечного сечения воздуховодов проводят по допустимым скоростям движения воздуха. Потери давления DР, Па, на участке воздуховода длиной l определяют по формуле:
DР=Rbl+Z
где R – удельные потери давления на 1м воздуховода, Па/мБ определяются по табл.12.17 [4]
b-коэффициент, учитывающий фактическую шероховатость стенок воздуховода, определяем по табл. 12.14 [4]
Z-потери давления в местных сопротивлениях, Па, определяем по формуле: Z=Sx×Pg,
Где Pg – динамическое давление воздуха на участке, Па, определяем по табл. 12.17 [4]
Sx - сумма коэффициентов местных сопротивлений.
Аэродинамический расчет состоит их 2 этапов: 1) расчета участков основного направления; 2) увязка ответвлений.
Последовательность расчета. 1. Определяем нашрузки расчетных участков, характеризующихся постоянством расхода воздуха; 2. Выбираем основное направление, для чего выявляем наиболее протяженную цепь участков; 3. Нумеруем участки магистрали и ответвлений, начиная с участка, наиболее удаленного с наибольшим расходом. 4. Размеры сечения воздуховода определяем по формуле
где L –расход воздуха на участке, м3/ч Jр- рекомендуемая скорость движения воздуха м/с, определяем по табл. 11.3 [3] 5. Зная ориентировочную площадь сечения, определяем стандартный воздуховод и расчитываем фактическую скорость воздуха:
6. Определяем R,Pg по табл. 12.17 [4]. 7. Определяем коэффициенты местных сопротивлений. 8. Общие потери давления в системе равны сумме потерь давления в воздуховодах по магистрали и в вентиляционном оборужовании: DP=S(Rbl+Z)маг+DPоб 9. Методика расчета ответвлений аналогична.
После их расчета проводят неувязку. Результаты аэродинамического расчета воздуховодов сводим в табл 8.1.
Pg=g*h(rн-rв)=9.81*4.7(1.27-1.2)=3.25 Па
Р-ры | J | b | R | Rl b | S x | Pg | Z | Rl b + | S Rl b | прим | ||||||||||||||||
уч. | а х в | dэ | Z | +Z | ||||||||||||||||||||||
Магистраль | ||||||||||||||||||||||||||
1 | 500 | 1.85 | 400x400 | 400 | 0.8 | 1.4 | 0.02 | 0.05 | 2.97 | 0.391 | 1.16 | 1.21 | ||||||||||||||
2 | 500 | 1.5 | 420x350 | 0.94 | 1.21 | 0.03 | 0.054 | 0.55 | 0.495 | 0.27 | 0.324 | |||||||||||||||
3 | 1000 | 5 | 520x550 | 0.97 | 1.23 | 0.02 | 0.132 | 0.85 | 0.612 | 0.52 | 0.643 | 2.177 | ||||||||||||||
4 | 12113 | 2.43 | 520x550 | 1.2 | 1.25 | 0.03 | 0.038 | 1.15 | 0.881 | 0.93 | 0.968 | 3.146 | ||||||||||||||
Ответвления | ||||||||||||||||||||||||||
5 | 243 | 1.85 | 270x270 | 0.92 | 1.43 | 0.04 | 0.06 | 2.85 | 0.495 | 1.41 | 1.47 | |||||||||||||||
6 | 243 | 7 | 220x360 | 0.9 | 1.21 | 0.04 | 0.34 | 1.1 | 0.495 | 0.54 | 0.88 | 2.35 | ||||||||||||||
7 | 500 | 1.85 | 400x400 | 400 | 0.8 | 1.4 | 0.02 | 0.05 | 3.45 | 0.391 | 1.35 | 1.4 |
Участок №1
Решетка x=2
Боковой вход x=0.6
Отвод 900 x=0.37
Участок №2
Тройник x=0.25
Участок №3
Тройник x=0.85
Участок №4
Зонт x=01.15
Невязка=(DРотв5+6 - DРуч.м. 1+2+3)/DРуч.ш. 1+2+3*100%=
=(2.35-2.177)/2.177*100%=7.9% < 15% - условие выполнено
Невязка=(DРотв7 - DРуч.м. 1+2)/DРуч.м. 1+2*100%=
=(1.4-1.534)/1.534*100%=-8.7% > -15% - условие выполнено
Выбор решеток
Таблица 9.1
Воздухораспределительные устройства
Номер помещения | Ln | Тип решетки | Колличество | x |
Подбор приточных решеток | ||||
2 | 1176 | Р-200 | 4 | 2 |
5 | 180 | Р-200 | 1 | 2 |
6 | 288 | Р-200 | 1 | 2 |
7 | 504 | Р-200 | 2 | 2 |
9 | 1000 | Р-200 | 4 | 2 |
10 | 486 | Р-200 | 2 | 2 |
Подбор вытяжных решеток | ||||
1 | 5743 | Р-200 | 20 | 2 |
2 | 101 | Р-150 | 1 | 2 |
3 | 400 | Р-150 | 8 | 2 |
4 | 540 | Р-200 | 2 | 2 |
5 | 180 | Р-200 | 1 | 2 |
6 | 432 | Р-200 | 2 | 2 |
7 | 630 | Р-200 | 3 | 2 |
8 | 108 | Р-150 | 1 | 2 |
9 | 1000 | Р-200 | 4 | 2 |
10 | 243 | Р-200 | 1 | 2 |
Расчет калорифера
Для подогрева приточного воздуха используем калориферы, которые, как правило, обогреваются водой. Приточный воздух необходимо нагревать от температуры наружного воздуха tн=-25°С до температуры на 1¸1.5 25°С меньешй температуры притока (этот запас компенсируется нагревом воздуха в воздуховодах), т.е. до tн=15-1=14°С
Колличество нагреваемого воздуха составляем 21377 м3/ч.
Подбираем калорифер по следующей методике:
1. Задаемся массовой скоростью движения теплоносителя Jr=8 кг/(м2с)
2. Расчитываем ориентировочную площадь живого сечения калориферной установки.
fкуор=Ln*rн/(3600*Jr), м2
где Ln – расход нагреваемого воздуха, м3/ч
rн – плотность воздуха, кг/м3
fкуор=21377*1.332/(3600*10)=0.79 м2
3. По fкуор и табл. 4.37 [5] принимаем калорифер типа КВС-9п, для которого:
площадь поверхности нагрева Fk=19,56м2, площадь живого сечение по воздуху fk=0.237622м2, по теплоносителю fтр=0.001159м2.
4. Расчитаем необходимое количество калориферов, установленных параллельно по воздуху:
m||в=fкуор/fk=0.79/0.237622=3,3. Принимаем m||в=3 шт
5. Рассчитаем действительную скорость движения воздуха.
(Jr)д=Ln*rн/(3600*fk*m||в)=21377-1.332/(3600*0.237622)=8.35 кг/м2с
6. Определяем расход тепла на нагрев воздуха, Вт/ч:
Qк.у.=0.278*Ln*Cv*(tk-tнб)=0.278*21377*1.2(15-(-8))=164021 Вт
7. Рассчитаем колличество теплоносителя, проходящее через калориферную установку.
W=(Qк.у*3,6)/rв*Cв*(tг-to), m3/ч
W=(164021*3.6)/4.19*1000*(130-70)=2.82 m3/ч
8. Определяем действитеельную скорость воды в трубках калорифера.
v=W/(3600*fтр*n||m), m/c
v=2.82/(3600*0.001159*3)=0.23, m/c
9. По табл. 4.40 [5] определяем коеффициент теплоотдачи
К=33.5 Вт/м2 0с
10. Определяем требуемую поверхность нагрева калориферной установки
Fкутр=Qку/(К(tср т – tср в), м2
Fкутр=164021/(33.5*(130+70/2)-(15-8/2))=50.73 м2
11. Nk=Fкутр/Fку=50.73/19.56=2.89. Принимаем 3 шт
12. Зная общее колличество калориферов, находим колилчество калориферов последовательно по воздуху
nпосл в=Nk/m||в=3/3=1 шт
13. Определяем запас поверхности нагрева
Запас=(Fk-Fкутр)/Fкутр*100%=10¸20%
Запас=(15.86-50.73)/50.73=15% <=20%
Условие выполнено
14. Определим аэродинамическое сопротивление калориферной установки по табл. 4.40 [5]
Pк=65.1 па
Подбор фильтров
В помещения административно-бытовых зданий борьба с пылью осуществляется путем предотвращения попадания её извне и удаление пыли, образующейся в самих помещениях.
Подаваемый в помещениях приточный воздух очищается в воздушных фильтрах. Плдберем фильтры для очистки приточного воздуха.
1. Целью очистки воздуха в аудитории принимаем защиту находящихся там людей от пыли. Степень очистки в этом случае равна hтр=0,6¸0,85
2. По табл. 4.1 [4] выбираем класс фильтра – III, по табл. 4.2 [4] вид фильтра смоченный, тип – волокнистый, наименование – ячейковый ФяУ, рекомендуемая воздушная нагрузка на входное сечение 9000 м3/ч
3. Рассчитываем требуемую площадь фильтрации:
Fфтр=Ln/q, m2,
где Ln – колличество приточного воздуха, м3/ч
Fфтр=15634/9000=1.74 м2
4. Определяем необходимое колличество ячеек:
nя=Fфтр/fя
где fя – площадь ячейки, 0.22 м2
nя=1.74/0.22=7.9 м2
Принимаем 9 шт.
5. Находим действительную площадь фильтрации:
Fфд=nя*fя=9*0.22=1.98 м2
6. Определяем действительную воздушную нагрузку:
qд=Ln/Fфд=15634/1.98=7896 м3/ч
7. Зная действительную воздушную нагрузку и выбранный тип фильтра, по номограмме 4.3 [4] выбираем начальное сопротивление:
Pф.ч.=44 Па
8. Из табл. 4.2. [4] знаем, что сопротивление фильтра при запылении может увеличиваться в 3 раза и по номограмме 4.4 [4] находим массу уловленной пыли m0, г/м2:
Pф.п.=132 Па;
m0=480 г/м2
9. По номограмме 4.4 [4] при m0=480 г/м2 1-hоч=0.13 => hоч=0.87
hоч > hочтр
10. Рассчитаем колличество пыли, осаждаемой на 1 м2 площади фильтрации в течении 1 часа.
mуд=L*yn*hn/fя*nя=15634*5*0.87/1.98=34.35 г/м2ч
11. Рассчитаем переодичность замены фильтрующей поверхности:
tрег=м0/муд=480/34.35=14 часов
12. Рассчитаем сопротивление фильтра:
Pф=DPф.ч.+DDPф.п.=44+132= 176 Па
2019-07-03 | 413 | Обсуждений (0) |
5.00
из
|
Обсуждение в статье: Аэродинамический расчет воздуховодов |
Обсуждений еще не было, будьте первым... ↓↓↓ |
Почему 1285321 студент выбрали МегаОбучалку...
Система поиска информации
Мобильная версия сайта
Удобная навигация
Нет шокирующей рекламы