Мегаобучалка Главная | О нас | Обратная связь


Аэродинамический расчет воздуховодов



2019-07-03 385 Обсуждений (0)
Аэродинамический расчет воздуховодов 0.00 из 5.00 0 оценок




Его проводят с целью определения размеров поперечного сечения участков сети. В системах с механическим побуждением движения воздуха потери давления определяют выбор вентилятора. В этом случае подбор размеров поперечного сечения воздуховодов проводят по допустимым скоростям движения воздуха.

Потери давления DР, Па, на участке воздуховода длиной l определяют по формуле:

 

DР=Rbl+Z

 

где R – удельные потери давления на 1м воздуховода, Па/мБ определяются по табл.12.17 [4]

 

b-коэффициент, учитывающий фактическую шероховатость стенок воздуховода, определяем по табл. 12.14 [4]

 

Z-потери давления в местных сопротивлениях, Па, определяем по формуле:

       Z=Sx×Pg,

 

Где Pg – динамическое давление воздуха на участке, Па, определяем по табл. 12.17 [4]

 

Sx - сумма коэффициентов местных сопротивлений.

 

 

Аэродинамический расчет состоит их 2 этапов:

1) расчета участков основного направления;

2) увязка ответвлений.

 

Последовательность расчета.

1. Определяем нашрузки расчетных участков, характеризующихся постоянством расхода воздуха;

2. Выбираем основное направление, для чего выявляем наиболее протяженную цепь участков;

3. Нумеруем участки магистрали и ответвлений, начиная с участка, наиболее удаленного с наибольшим расходом.

4. Размеры сечения воздуховода определяем по формуле

 

где L –расход воздуха на участке, м3

Jр­- рекомендуемая скорость движения воздуха м/с, определяем по табл. 11.3 [3]

5. Зная ориентировочную площадь сечения, определяем стандартный воздуховод и расчитываем фактическую скорость воздуха:

 

6. Определяем R,Pg по табл. 12.17 [4].

7. Определяем коэффициенты местных сопротивлений.

8. Общие потери давления в системе равны сумме потерь давления в воздуховодах по магистрали и в вентиляционном оборужовании:

DP=S(Rbl+Z)маг+DPоб

9. Методика расчета ответвлений аналогична.

 

После их расчета проводят неувязку.

Результаты аэродинамического расчета воздуховодов сводим в табл 8.1.




Расчет естественной вентиляции

 

 

Pg=g*h(rн-rв)=9.81*4.7(1.27-1.2)=3.25 Па

 

 

L l

Р-ры

J b R Rl b S x Pg Z Rl b + S Rl b прим
уч.     а х в               Z +Z  

Магистраль

1 500 1.85 400x400 400 0.8 1.4 0.02 0.05 2.97 0.391 1.16 1.21    
2 500 1.5 420x350   0.94 1.21 0.03 0.054 0.55 0.495 0.27 0.324    
3 1000 5 520x550   0.97 1.23 0.02 0.132 0.85 0.612 0.52 0.643 2.177  
4 12113 2.43 520x550   1.2 1.25 0.03 0.038 1.15 0.881 0.93 0.968 3.146  

Ответвления

5 243 1.85 270x270   0.92 1.43 0.04 0.06 2.85 0.495 1.41 1.47    
6 243 7 220x360   0.9 1.21 0.04 0.34 1.1 0.495 0.54 0.88 2.35  
7 500 1.85 400x400 400 0.8 1.4 0.02 0.05 3.45 0.391 1.35 1.4    

 

 

Участок №1

       Решетка x=2

       Боковой вход x=0.6

       Отвод 900 x=0.37

 

Участок №2

       Тройник x=0.25

 

Участок №3

       Тройник x=0.85

 

Участок №4

       Зонт x=01.15

 

 

 

 

Невязка=(DРотв5+6 - DРуч.м. 1+2+3)/DРуч.ш. 1+2+3*100%=

=(2.35-2.177)/2.177*100%=7.9% < 15% - условие выполнено

 

Невязка=(DРотв7 - DРуч.м. 1+2)/DРуч.м. 1+2*100%=

=(1.4-1.534)/1.534*100%=-8.7% > -15% - условие выполнено

 


Выбор решеток

 

Таблица 9.1

Воздухораспределительные устройства

 

Номер помещения Ln Тип решетки Колличество x

Подбор приточных решеток

2 1176 Р-200 4 2
5 180 Р-200 1 2
6 288 Р-200 1 2
7 504 Р-200 2 2
9 1000 Р-200 4 2
10 486 Р-200 2 2

Подбор вытяжных решеток

1 5743 Р-200 20 2
2 101 Р-150 1 2
3 400 Р-150 8 2
4 540 Р-200 2 2
5 180 Р-200 1 2
6 432 Р-200 2 2
7 630 Р-200 3 2
8 108 Р-150 1 2
9 1000 Р-200 4 2
10 243 Р-200 1 2

 


Расчет калорифера

Для подогрева приточного воздуха используем калориферы, которые, как правило, обогреваются водой. Приточный воздух необходимо нагревать от температуры наружного воздуха tн=-25°С до температуры на 1¸1.5 25°С меньешй температуры притока (этот запас компенсируется нагревом воздуха в воздуховодах), т.е. до tн=15-1=14°С

Колличество нагреваемого воздуха составляем 21377 м3/ч.

Подбираем калорифер по следующей методике:

1. Задаемся массовой скоростью движения теплоносителя Jr=8 кг/(м2с)

2. Расчитываем ориентировочную площадь живого сечения калориферной установки.

fкуор=Ln*rн/(3600*Jr), м2

где Ln – расход нагреваемого воздуха, м3

rн – плотность воздуха, кг/м3

fкуор=21377*1.332/(3600*10)=0.79 м2

3. По fкуор и табл. 4.37 [5] принимаем калорифер типа КВС-9п, для которого:

площадь поверхности нагрева Fk=19,56м2, площадь живого сечение по воздуху fk=0.237622м2, по теплоносителю fтр=0.001159м2.

4. Расчитаем необходимое количество калориферов, установленных параллельно по воздуху:

m||в=fкуор/fk=0.79/0.237622=3,3. Принимаем m||в=3 шт

5. Рассчитаем действительную скорость движения воздуха.

(Jr)д=Ln*rн/(3600*fk*m||в)=21377-1.332/(3600*0.237622)=8.35 кг/м2с

6. Определяем расход тепла на нагрев воздуха, Вт/ч:

Qк.у.=0.278*Ln*Cv*(tk-tнб)=0.278*21377*1.2(15-(-8))=164021 Вт

7. Рассчитаем колличество теплоносителя, проходящее через калориферную установку.

W=(Qк.у*3,6)/rв*Cв*(tг-to), m3

W=(164021*3.6)/4.19*1000*(130-70)=2.82 m3

8. Определяем действитеельную скорость воды в трубках калорифера.

v=W/(3600*fтр*n||m), m/c

v=2.82/(3600*0.001159*3)=0.23, m/c

9. По табл. 4.40 [5] определяем коеффициент теплоотдачи

К=33.5 Вт/м2 0с

10. Определяем требуемую поверхность нагрева калориферной установки

Fкутр=Qку/(К(tср т – tср в), м2

Fкутр=164021/(33.5*(130+70/2)-(15-8/2))=50.73 м2

11. Nk=Fкутр/Fку=50.73/19.56=2.89. Принимаем 3 шт

12. Зная общее колличество калориферов, находим колилчество калориферов последовательно по воздуху

nпосл в=Nk/m||в=3/3=1 шт

13. Определяем запас поверхности нагрева

Запас=(Fk-Fкутр)/Fкутр*100%=10¸20%

Запас=(15.86-50.73)/50.73=15% <=20%

Условие выполнено

14. Определим аэродинамическое сопротивление калориферной установки по табл. 4.40 [5]

Pк=65.1 па


Подбор фильтров

В помещения административно-бытовых зданий борьба с пылью осуществляется путем предотвращения попадания её извне и удаление пыли, образующейся в самих помещениях.

Подаваемый в помещениях приточный воздух очищается в воздушных фильтрах. Плдберем фильтры для очистки приточного воздуха.

 

1. Целью очистки воздуха в аудитории принимаем защиту находящихся там людей от пыли. Степень очистки в этом случае равна hтр=0,6¸0,85

2. По табл. 4.1 [4] выбираем класс фильтра – III, по табл. 4.2 [4] вид фильтра смоченный, тип – волокнистый, наименование – ячейковый ФяУ, рекомендуемая воздушная нагрузка на входное сечение 9000 м3

3. Рассчитываем требуемую площадь фильтрации:

Fфтр=Ln/q, m2,

где Ln – колличество приточного воздуха, м3

Fфтр=15634/9000=1.74 м2

4. Определяем необходимое колличество ячеек:

nя=Fфтр/fя

где fя – площадь ячейки, 0.22 м2

nя=1.74/0.22=7.9 м2

Принимаем 9 шт.

5. Находим действительную площадь фильтрации:

Fфд=nя*fя=9*0.22=1.98 м2

6. Определяем действительную воздушную нагрузку:

qд=Ln/Fфд=15634/1.98=7896 м3

7. Зная действительную воздушную нагрузку и выбранный тип фильтра, по номограмме 4.3 [4] выбираем начальное сопротивление:

Pф.ч.=44 Па

8. Из табл. 4.2. [4] знаем, что сопротивление фильтра при запылении может увеличиваться в 3 раза и по номограмме 4.4 [4] находим массу уловленной пыли m0, г/м2:

Pф.п.=132 Па;

m0=480 г/м2

9. По номограмме 4.4 [4] при m0=480 г/м2 1-hоч=0.13 => hоч=0.87

hоч > hочтр

10. Рассчитаем колличество пыли, осаждаемой на 1 м2 площади фильтрации в течении 1 часа.

mуд=L*yn*hn/fя*nя=15634*5*0.87/1.98=34.35 г/м2ч

11. Рассчитаем переодичность замены фильтрующей поверхности:

tрег0уд=480/34.35=14 часов

12. Рассчитаем сопротивление фильтра:

Pф=DPф.ч.+DDPф.п.=44+132= 176 Па




2019-07-03 385 Обсуждений (0)
Аэродинамический расчет воздуховодов 0.00 из 5.00 0 оценок









Обсуждение в статье: Аэродинамический расчет воздуховодов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему в черте города у деревьев заболеваемость больше, а продолжительность жизни меньше?
Почему в редких случаях у отдельных людей появляются атавизмы?
Почему наличие хронического атрофического гастрита способствует возникновению и развитию опухоли желудка?
Почему агроценоз не является устойчивой экосистемой



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (385)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)