Мегаобучалка Главная | О нас | Обратная связь


Вычислительные процедуры симплекс-метода .



2019-07-03 205 Обсуждений (0)
Вычислительные процедуры симплекс-метода . 0.00 из 5.00 0 оценок




 симплекс-алгоритм состоит из следующих шагов.

Шаг 0. Используя линейную модель стандартной формы , опреде-
ляют начальное допустимое базисное решение путем приравнива-
ния к нулю п — т ( небазисных ) переменных.

Шаг 1. Из числа текущих небазисных ( равных нулю ) перемен-
ных выбирается включаемая в новый базис переменная , увеличение
которой обеспечивает улучшение значения целевой функции. Если
такой переменной нет , вычисления прекращаются , так как текущее
базисное решение оптимально . В противном случае осуществляется
переход к шагу 2.

Шаг 2. Из числа переменных текущего базиса выбирается исклю-
чаемая переменная , которая должна принять нулевое значение ( стать
небазисной ) при введении в состав базисных новой переменной .

Шаг 3. Находится новое базисное решение , соответствующее
новым составам небазисных и базисных переменных . Осуществляется переход к шагу 1.

Поясним процедуры симплекс-метода на примере решения нашей зада-
чи . Сначала необходимо представить целевую функцию и ограничения модели в стандартной форме:

                   Z - X1 - 25X2 +0S1 -0S2 = 0 ( Целевая функция )

     5X1 + 100X2 + S1      = 1000 ( Ограничение )

      -X1 + 2X2     + S2 = 0 ( Ограничение )   

Как отмечалось ранее , в качестве начального пробного решения
используется решение системы уравнений , в которой две переменные принимаются равными нулю . Это обеспечивает единст-
венность
и допустимость получаемого решения . В рассматриваемом
случае очевидно, что подстановка X1 = X2 = 0 сразу же приводит к следующему результату: S1 = 1000 , S2 = 0 ( т. е. решению , соответствующему точке А на рис. 1 ) . Поэтому точку А можно использовать как начальное допустимое решение . Величина Z в этой точке равна нулю , так как и X1 и X2  имеют нулевое значение . Поэтому , преобразовав уравнение целевой функции так , чтобы его правая часть стала равной нулю , можно убедиться в том , что правые части уравнений целевой функции и ограничений полностью характеризуют начальное решение . Это имеет место во всех случаях , когда начальный базис состоит из остаточных переменных.            

Полученные результаты удобно представить в виде таблицы :

 

Базисные переменные Z X1 X2 S1 S2 Решение  
Z 1 -1 - 25 0 0 0 Z – уравнение
S1 0 5 100 1 0 1000 S1 –уравнение
S2 0 -1 2 0 1 0 S2 – уравнение

 

 

Эта таблица интерпретируется следующим образом. Столбец
« Базисные переменные » содержит переменные пробного базиса S1 ,
S2 ,  значения которых приведены в столбце « Решение » . При
этом подразумевается , что небазисные переменные X1 и X2 ( не пред-
ставленные в первом столбце ) равны нулю . Значение целевой функ-
ции Z = 1*0 + 25*0 + 0*1000 + 0*1 равно нулю , что и показано в последнем столбце таблицы .

 Определим , является ли полученное пробное решение наи-
лучшим ( оптимальным ) . Анализируя Z - уравнение , нетрудно заме-
тить , что обе небазисные переменные X1 и X2 , равные нулю , имеют
отрицательные коэффициенты . Всегда выбирается переменная с большим абсолютным значением отрицательного коэффициента ( в Z - уравнении ) , так как практический опыт вычислений показывает , что в этом случае оптимум достигается быстрее .

Это правило составляет основу используемого в вычислительной
схеме симплекс-метода условия оптимальности , которое состоит в
том , что , если в задаче максимизации все небазисные переменные в
Z - Уравнение имеют неотрицательные коэффициенты , полученное пробное решение является оптимальным . В противном случае в ка-
честве новой базисной переменной следует выбрать ту , которая имеет
наибольший по абсолютной величине отрицательный коэффициент .

Применяя условие оптимальности к исходной таблице , выберем
в качестве переменной , включаемой в базис , переменную Х2 . Исклю-
чаемая переменная должна быть выбрана из совокупности базисных
переменных S1 , S2 . Процедура выбора исключаемой переменной предполагает проверку условия допустимости , требующего , чтобы в качестве исключаемой переменной выбиралась та из пере-
менных текущего базиса , которая первой обращается в нуль при уве-
личении включаемой переменной X2 вплоть до значения , соответствующего смежной экстремальной точке .

Интересующее нас отношение ( фиксирующее искомую точку пе-ресечения и идентифицирующее исключаемую переменную ) можно
определить из симплекс-таблицы. Для этого в столбце , соответствующем вводимой переменной X2 , вычеркиваются отрицательные и нулевые элементы ограничений . Затем вычисляются отношения постоянных , фигурирующих в правых частях этих ограничений , к оставшимся элементам столбца , соответствующего вводимой переменной X2 . Исключаемой переменной будет та переменная текущего базиса , для которой указанное выше отношение минимально.

Начальная симплекс-таблица для нашей задачи , получаемая после проверки условия допустимости ( т. е. после вычисления соответствующих отношений и определения исключаемой переменной ) , воспроизведена ниже . Для удобства описания вычислительных процедур , осуществляемых на следующей итерации , введем ряд необходимых определений . Столбец симплекс-таблицы , ассоциированный с вводимой переменной , будем называть ведущим столбцом . Строку , соответствующую исключаемой переменной , назовем ведущей строкой ( уравнением ) , а элемент таблицы , находящийся на пересечении ведущего столбца и ведущей строки , будем называть ведущим элементом .

После того как определены включаемая и исключаемая пере-
менные ( с использованием условий оптимальности и допустимости ) ,
следующая итерация ( поиск нового базисного решения ) осуществля-
ется методом исключения переменных , или методом Гаусса — Жордана . Этот процесс изменения базиса включает вычислительные процедуры двух типов .

Тип 1 ( формирование ведущего уравнения ) .

Новая ведущая строка = Предыдущая ведущая строка / Ведущий элемент

Тип 2 ( формирование всех остальных уравнений , включая Z - yравнение ) .

Новое уравнение = Предыдущее уравнение —

é Коэффициент  ù

ê ведущего столбца ê * ( Новая ведущая строка ) .   

ê предыдущего     ê

ë уравнения         û

Выполнение процедуры типа 1 приводит к тому , что в новом
ведущем уравнении ведущий элемент становится равным единице .
В результате осуществления процедуры типа 2 все остальные коэф-
фициенты , фигурирующие в ведущем столбце , становятся равными
нулю . Это эквивалентно получению базисного решения путем ис-
ключения
вводимой переменной из всех уравнений , кроме ведущего .
Применяя к исходной таблице процедуру 1 , мы делим S2 - уравнение на ведущий элемент , равный 1 .

 

Базисные переменные Z X1 X2 S1 S2 Решение
Z            
S1            
S2 0 -1/2 1 0 1/2 0

 

Чтобы составить новую симплекс-таблицу , выполним необходимые вычислительные процедуры типа 2 .

1. Новое Z - уравнение .

старое Z - уравнение : ( 1 -1 -25 0 0 0 )

                ( - ( -25 ) * ( 0 -1/2 1 0 1/2 0 )

                                   ( 1 -131/2 0 0 121/2 0 )

2. Новое S1 - уравнение

старое S1 - уравнение : ( 0 5 100 1 0 1000 )

                      ( - 100 ) * ( 0 -1/2 1  0 1/2  0 )

                                          ( 0  5 5  0 1  - 50  1000 )      

        

   

 

Новая симплекс-таблица будет иметь вид :

             

Базисные переменные Z X1 X2 S1 S2 Решение  
Z 1 -131/2 0 0 121/2 0 Z – уравнение
S1 0 55 0 1 -50 1000 S1 –уравнение
X2 0 -1/2 1 0 1/2 0 X2 – уравнение

       

 

 

В новом решении X1 = 0 и S2 = 0 . Значение Z не изменяется .

Заметим , что новая симплекс-таблица обладает такими же ха-
рактеристиками , как и предыдущая : только небазисные переменные
 X1 и S2 равны нулю , а значения базисных переменных , как и раньше ,
представлены в столбце « Решение » . Это в точности соответствует
результатам , получаемым при использовании метода Гаусса—Жор-
дана .

Из последней таблицы следует , что на очередной итерации в со-
ответствии с условием оптимальности в качестве вводимой перемен-
ной следует выбрать X1 , так как коэффициент при этой переменной в

Z-ypaвнении равен -131/2 . Исходя из условия допустимости , определяем , что исключаемой переменной будет S1 . Отношения , фигурирующие в правой части таблицы , показывают , что в новом базисном решении значение включаемой переменной X1 будет равно 1000/55 ( = минимальному отношению ) . Это приводит к увеличению целевой функции на ( 1000/55 ) * ( -131/2 ) = ( 2455/11 ) .

К получению симплекс-таблицы , соответствующей новой итерации , приводят следующие вычислительные операции метода Гаусса—Жордана.

1)  Новое ведущее S1 - уравнение = Предыдущее S1 - уравнение / ( 55 ) .

 

Базисные переменные Z X1 X2 S1 S2 Решение
Z            
S1 0 1 0 1/55 - 50/55 1000/55
X2            

 

 

2) Новое  Z - уравнение = Предыдущее  Z - уравнение - ( -131/2 ) * Новое /ведущее уравнение :

                                    ( 1 -131/2 0 0 121/2  0 )

               - ( -131/2 ) * ( 0 1 0 1/55 -50/55 1000/55  )

                                    ( 1 0 0 27/110 5/22 2455/11 )

 

 

3) Новое X2 - уравнение = Предыдущее  X2 - уравнение - ( -1/2 ) * Новое ведущее уравнение :

                                          ( 0 -1/2 1   0     1/2     0    )

                    - ( - 1/2  ) *   ( 0  1   0  1/55 -50/55 1000/55 )

                                    ( 0   0   1  1/110  1/22 91/11  )

 

 

В результате указанных преобразований получим следующую симп-
лекс-таблицу .

 

Базисные переменные Z X1 X2 S1 S2 Решение
Z 1 0 0 27/110 5/22 2455/11
X1 0 1 0 1/55 -50/55 1000/55
X2 0 0 1 1/110 1/22 91/11

 

В новом базисном решении X1=1000/55 и X2=91/11 . Значение Z увеличилось с 0 ( предыдущая симплекс-таблица ) до 2455/11 ( последняя симплекс-таблица ) . Этот результирующий прирост целевой функции обусловлен увеличением X1 от О до 1000/55 , так как из Z - строки предыдущей симплекс-таблицы следует , что возрастанию данной переменной на единицу соответствует увеличение целевой функции на( -131/2 ) .

Последняя симплекс-таблица соответствует оптимальному реше-
нию задачи, так как в Z - уравнении ни одна из небазисных переменных не фигурирует с отрицательным коэффициентом. Получением этой pезультирующей таблицы и завершаются вычислительные процедуры симплекс-метода .

В рассмотренном выше примере алгоритм симплекс-метода ис-
пользован при решении задачи , в которой целевая функция подлежала максимизации . В случае минимизации целевой функции в этом
алгоритме необходимо изменить только условие оптимальности :
в качестве новой базисной переменнойследует выбирать ту переменную , которая в Z - уравнении имеет наибольший положительный коэффициент . Условия допустимости в обоих случаях ( максимизации и минимизации ) одинаковы . Представляется целесообразным дать теперь окончательные формулировки обоим условиям , используемым в симплекс-методе .

Условие оптимальности . Вводимой переменной в задаче максимизации ( минимизации ) является небазисная переменная , имеющая в Z -уравнении наибольший отрицательный ( положительный ) коэффициент , В случае равенства таких коэффициентов для нескольких небазисных переменных выбор делается произвольно , если все коэффициенты при небазисных переменных в Z - уравнении неотрицательны (неположительны) , полученное решение является оптимальным .

Условие допустимости , в задачах максимизации и минимизации в качестве исключаемой переменной выбирается та базисная переменная , для которой отношение постоянной в правой части соответствующего ограничения к ( положительному ) коэффициенту ведущего столбца минимально. В случае равенства этого отношения для нескольких базисных переменных выбор делается произвольно .

 

 


Оптимальное решение

 

 

С точки зрения практического использования результатов ре-
шения задач ЛП классификация переменных , предусматривающая
их разделение на базисные и небазнсные , не имеет значения и при
анализе данных , характеризующих оптимальное решение , может
не учитываться . Переменные , отсутствующие в столбце « Базисные
переменные » , обязательно имеют нулевое значение . Значения ос-
тальных переменных приводятся в столбце « Решение » . При интер-
претации результатов оптимизации в нашей задаче нас прежде всего интересует количество времени , которое закажет наша фирма на радио и телевидение , т. е. значения управляемых переменных X1 и X2 . Используя данные , содержащиеся в симплекс-таблице для оптимального решения , основные результаты можно представить в следующем виде :

 

 


Управляемые переменные Оптимальные значения Решение
X1 1000/55 Время выделяемое фирмой на телерекламу
X2 91/11 Время выделяемое фирмой на радиорекламу
Z 2455/11 Прибыль получаемая от рекламы .

 

Заметим, что Z = X1 + 25X2 = 1000/55 + 25 * 91/11 = 2455/11 . Это решение соответствует данным заключительной симплекс-таблицы .

Статус ресурсов

 

Будем относить ресурсы к дефицитным или недифицитным в зависимости от того , полное или частичное их использо-
вание предусматривает оптимальное решение задачи . Сейчас цель
состоит в том , чтобы получить соответствующую информацию непос-
редственно из симплекс-таблицы для оптимального решения . Од-
нако сначала следует четко уяснить следующее . Говоря о ресурсах ,
фигурирующих в задаче ЛП , мы подразумеваем , что установлены
некоторые максимальные пределы их запасов , поэтому в соответст-
вующих исходных ограничениях должен использоваться знак <= .
Следовательно , ограничения со знаком => не могут рассматриваться
как ограничения на ресурсы . Скорее , ограничения такого типа отра-
жают то обстоятельство , что решение должно удовлетворять опре-
деленным требованиям , например обеспечению минимального спро-
са или минимальных отклонений от установленных структурных
характеристик производства ( сбыта ) .

В модели , построенной для нашей задачи , фигурирует ограничение со знаком <= . Это требование можно рассматривать как ограничение на соответствующий « ресурс » , так как увеличение спроса на продукцию эквивалентно расширению « представительства » фирмы на рынке сбыта .

Из вышеизложенного следует , что статус ресурсов ( дефицитный
или недефицитный ) для любой модели ЛП можно установить не-
посредственно из результирующей симплекс-таблицы , обращая вни-
мание на значения остаточных переменных . Применительно к нашей задаче можно привести следующую сводку результатов

 

:

 

Ресурсы Остаточная переменная Статус ресурса
Ограничение по бюджету S1 Дефицитный
Превышение времени рекламы радио над теле   S2 Дефицитный

 

Положительное значение остаточной переменной указывает на
неполное использование соответствующего ресурса , т . е . данный
ресурс является недефицятным. Если же остаточная переменная рав-
на нулю , это свидетельствует о полном потреблении соответствующе-
го ресурса. Из таблицы видно , что наши ресурсы являются дефицитными . В случае недефицитности любое увиличение ресурсов сверх установленного максимального значения привело бы лишь к тому , что они стали бы еще более недефнинтными . Оптимальное решение задачи при этом осталось бы неизменным.

Ресурсы, увеличение запасов которых позволяет улучшить ре-
шение ( увеличить прибыль ) , — это остаточные переменные S1 и S2 , по-
скольку из симплекс-таблицы для оптимального решения видно ,
что они дефицитные . В связи с этим логично поставить следующий
вопрос: какому из дефицитных ресурсов следует отдать предпочте-
ние при вложении дополнительных средств на увеличение их запа-
сов , с тем чтобы получить от них максимальную отдачу ? Ответ на
этот вопрос будет дан в следующем подразделе этой главы , где рас-
сматривается ценность различных ресурсов .

 


Ценность ресурса

 

Ценность ресурса характеризуется величиной улучшения опти-
мального значения Z , приходящегося на единицу прироста объема
данного ресурса .

Информация для оптимального решения задачи представлена в симплекс-таблице . Обратим внимание на значения коэффициентов Z - уравнения , стоящих при переменных начальног о базиса S1 и S2 . Выделим для удобства соответстзующую часть симплекс-таблицы :

 

Базисные переменные Z X1 X2 S1 S2 Решение
Z 1 0 0 27/110 5/22 2455/11

 

Как следует из теории решения задач ЛП , ценность ресурсов всегда можно определить по значениям коэффициентов при переменных начального базиса , фигурирующих в Z - уравнении оптимальной симплекс-таблицы , таким образом Y1 = 27/110 , а Y2 = 5/22 .

Покажем , каким образом аналогичный результат можно получить непосредственно из симплекс-таблицы для оптимального решения . Рассмотрим Z - уравнение симплекс-таблицы для оптимального решения нашей задачи

Z = 2455/11 - ( 27/110S1 + 5/22S2 ) .

Положительное приращение переменной S1 относительно ее текущего
нулевого значения приводит к пропорциональному уменьшению Z ,
причем коэффициент пропорциональности равен 27/110 . Но , как следует из первого ограничения модели :

5X1 + 100X2 + S1 = 1000

увеличение S1 эквивалентно снижению количества денег выделеных на рекламу ( далее мы будем использовать в тексте , как первый ресурс ) .

 

 

Отсюда следует , что уменьшение количества денег выделеных на рекламу вызывает пропорциональное уменьшение целевой функции с тем же коэффициентом пропорциональности,равным27/110.Так как
мы оперируем с линейными функциями , полученный вывод можно
обобщить , считая , что и увеличение количества денег выделеных на рекламу ( эквивалентное введению и збыточной переменной S1 < 0 ) приводит к пропорциональному увеличению Z с тем же коэффициентом пропорциональности , равным 27/110 . Аналогичные рассуждения справед-
ливы для ограничения 2 .

Несмотря на то что ценность различных ресурсов , определяемая
значениями переменных Yi , была представлена в стоимостном выражении , ее нельзя отождествлять с действительными це-
нами , по которым возможна закупка соответствующих ресурсов .
На самом деле речь идет о некоторой мере , имеющей экономическую
природу н количественно характеризующей ценность ресурса только относительно полученного оптимального значения целевой функции .
При изменении ограничении модели соответствующие экономические
оценки будут меняться даже тогда , когда оптимизируемый процесс
предполагает применение тех же ресурсов . Поэтому при характерис-
тике ценности ресурсов экономисты предпочитают использовать
такие терминыт , как теневая цена , скрытая цена , или более специ-
фичный термин — двойственная оценка .

Заметим , что теневая цена ( ценность ресурса ) характеризует ин-
тенсивность улучшения оптимального значения Z . Однако при этом
не фиксируется интервал значений увеличения запасов ресурса ,
при которых интенсивность улучшения целевой функции остается
постоянной . Для большинства практических ситуаций логично пред-
положить наличие верхнего предела увеличения запасов , при пре-
вышении которого соответствующее ограничение становится избы-
точным , что в свою очередь приводит к новому базисному решению
и соответствующим ему новым теневым ценам . Ниже определяется
нитервал значений запасов ресурса , при которых соответствую-
щее ограничение не становится избыточным .




2019-07-03 205 Обсуждений (0)
Вычислительные процедуры симплекс-метода . 0.00 из 5.00 0 оценок









Обсуждение в статье: Вычислительные процедуры симплекс-метода .

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (205)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)