Мегаобучалка Главная | О нас | Обратная связь


Взаимодействие металлических конструкционных материалов с жидкими металлами, содержащими неметаллические примеси



2019-07-03 222 Обсуждений (0)
Взаимодействие металлических конструкционных материалов с жидкими металлами, содержащими неметаллические примеси 0.00 из 5.00 0 оценок




 

При рассмотрении возможности применения жидкого металла или расплава основным критерием его совместимости с конструкционным материалом может быть величина равновесной растворимости компонентов последнего в жидкой фазе. Однако вследствие несовершенства методов определения малых величин растворимостей, более достоверные данные о влиянии неметаллических примесей на совместимость жидкого металла (расплава) с конструкционным материалом во многих случаях удается получить из результатов исследования переноса массы в гетерогенных условиях.

Известно, что при изотермическом переносе массы в системе из двух чистых металлов (в твердом состоянии), разделенных жидкометаллическим расплавом, изменение массы единицы поверхности каждого из них является функцией растворимостей как первого, так и второго металлов в жидкой фазе[4].

В результате экспериментального исследования массопереноса в жидком натрии установлена корреляция между величинами параметров взаимодействия первого порядка атомов растворяющегося твердого металла с атомами неметаллического элемента в жидкой фазе и направлением преимущественного переноса массы в гетерогенной системе. Если расположить металлы (твердые в рассматриваемом диапазоне температур), являющиеся компонентами гетерогенных систем Fe-Ni-Na-O, Fe-Nb-Na-O и Fe-Mo-Na-O, в порядке возрастания абсолютных значений параметра взаимодействия с кислородом в разбавленных растворах на основе натрия при 800ОС, то получается следующий ряд: Ni, Mo, Fe, Nb. Проведенные эксперименты показали, что в исследованных системах преимущественный перенос массы происходит от металла с наибольшим значением параметра взаимодействия к металлу, у которого абсолютное значение этого параметра меньше. Сравнение рассчитанных величин параметров взаимодействия первого порядка с экспериментальными данными, имеющимися в литературе, показывает, что установленная закономерность справедлива и для систем на основе лития, в которых в качестве примеси присутствует азот.

Результаты расчета параметров взаимодействия первого порядка в разбавленных растворах систем натрий – ниобий – кислород и калий – ниобий – кислород согласуются с величинами определенными экспериментально. Системы Na-Nb-O и K-Nb-O относятся именно к той группе систем, где за счет сильного взаимодействия между атомами кислорода и ниобия, расчеты по стандартной методике приводят к существенно завышенным значениям коэффициента распределения кислорода между ниобием и жидким щелочным металлом по сравнению экспериментальными величинами. Расчет с использованием уравнений координационно-кластерной модели для трехкомпонентных растворов позволяет преодолеть это несоответствие.

Из анализа результатов расчета и имеющихся экспериментальных данных по определению растворимости ниобия в жидком калии следует, что в системе K-Nb-О при 600ОС образования двойного оксида ниобия и калия не происходит, по крайней мере, до концентрации 0,22% кислорода в калии.

Полученные в результате расчетов большие по абсолютной вели-чине отрицательные значения параметров взаимодействия с азотом в системах Li-Fe-N, Li-Cr-N и Li-Mo-N качественно подтверждаются имеющимися экспериментальными данными по влиянию примеси азота на совместимость железа, хрома и молибдена с жидким литием. Величины пороговой концентрации образования тройного соединения лития с хромом и азотом свидетельствуют о том, что образование Li9CrN5 необходимо учитывать при рассмотрении условий равновесия в системах, где присутствуют литий, хром и азот. Из уравнений модели также следует, что растворимость никеля в литии при температурах 300-900ОС практически не зависит от содержания азота в жидком металле. В системах на основе лития, где неметаллическим компонентом является водород, параметры взаимодействия принимают существенно меньшие по абсолютной величине значения, чем в системах, состоящих из тех же металлических компонентов, но с азотом в качестве элемента внедрения. Это свидетельствует о более слабом влиянии водорода на растворимость металлов в литии. Если расположить твердые металлы, являющиеся компонентами систем Li-Ni-H, Li-Nb-H, Li-V-H, Li-Cr-H и Li-Fe-H, в порядке возрастания абсолютных значений параметра взаимодействия с водородом при 550ОС, то получим следующий ряд: Ni, Cr, Fe, V, Nb.

 

Рис. 6. Температурная зависимость растворимости никеля (1), хрома (2), ванадия (3), железа (4) и ниобия (5) в чистом литии и литии с 0,05% водорода (- - - -)

Проведенные расчеты показали (рис. 6), что влияние примеси водорода на растворимость металлов в литии могло бы проявиться только в области относительно низких температур, где абсолютные значения растворимости чрезвычайно низки. В то же время имеющиеся данные свидетельствуют о том, что примесь водорода в литии может существенно влиять на процессы перераспределения других примесей внедрения (азот, углерод) в гетерогенных системах.


Совместимость металлических материалов с двухкомпонентными
металлическими расплавами

Известно, что совместимость конструкционного материала с металлическим расплавом в значительной степени зависит от величин равновесной растворимости компонентов этого материала в жидкой фазе. Если для жидких легкоплавких металлов (Na, K, Li) имеются экспериментальные данные, позволяющие оценить их совместимость с конструкционными материалами различных классов, то для двухкомпонентных расплавов (Li-Pb и др.), применение которых возможно, необходимые сведения в большинстве случаев отсутствуют. Дополнительные затруднения возникают при наличии в расплавах неметаллических примесей – кислорода, азота, водорода, которые сильно влияют на совместимость жидких и твердых металлов. Для предварительной оценки совместимости конструкционных материалов с многокомпонентными расплавами в настоящей работе предложена методика расчета растворимости твердых металлов в чистых двухкомпонентных расплавах, а также в расплавах, содержащих неметаллические примеси.

Используя разложение в ряд Тейлора избыточной парциальной мольной энергии Гиббса третьего компонента, получено выражение, позволяющее учесть в первом приближении влияние неметаллической примеси в расплаве[5] на растворимость твердого металла А3 в жидкой фазе:

 ,              (6)

где  – растворимость А3 в расплаве, содержащем x4 мольных долей неметаллического компонента;  – растворимость А3 в расплаве того же состава, но не содержащем примесей неметаллов; – удельный параметр взаимодействия. Следует отметить, что уравнение (6) справедливо только для систем, в которых компоненты А1 и А2 не образуют твердых растворов с А3.

Рис. 7. Температурные зависимости удельных параметров взаимодействия ,  и  в системах Li-Pb-Ni-O,

Li-Pb-Fe-O и Li-Pb-Cr-O вблизи состава хLi=0,17 и xPb=0,83

Расчеты, проведенные для расплавов эвтектического состава Li17Pb83, находящихся в контакте с хромом, никелем и железом, показали (рис. 7), что в гетерогенных системах наибольшее влияние примесь кислорода должна оказывать на перенос хрома между материалами и практически не оказывать никакого эффекта на растворение и перенос никеля в расплаве.

Такие результаты находятся в соответствии с экспериментальными наблюдениями (T.Flament, P.Tortorerelli, V.Coen, H.U.Borgstedt – J. Nucl. Mater. - 1992. - V.191-194. – Part A. - P. 132) . Учитывая очень низкую растворимость кислорода в расплаве Li17Pb83 (менее 1·10-4 % ат. при 550ОС), более обоснованным можно считать коррозионный механизм, который предполагает сильную зависимость константы скорости растворения хрома от содержания кислорода в расплаве. Основываясь на имеющихся экспериментальных данных, нельзя исключить возможности того, что промежуточной ступенью, контролирующей скорость растворения твердого металла в расплаве, является образование тройного соединения хрома с литием и кислородом на начальной стадии процесса.

Выбор эвтектического расплава Na-K был обусловлен наличием большого, по сравнению с другими двухкомпонентными расплавами, накопленного экспериментального материала по исследованию его совместимости с твердыми металлами. В двойном эвтектическом расплаве натрий – калий расчеты по уравнениям ОККМ привели к большим величинам удельного параметра взаимодействия между атомами хрома и кислорода в жидкой фазе, что свидетельствует о сильной зависимости растворимости хрома в расплаве натрий – калий от содержания неметаллической примеси. Примесь кислорода в жидкой фазе практически не оказывает влияния на растворимость и перенос чистого никеля в расплаве (в отличие от Fe и Cr). В целом, расчеты подтвердили, что по степени влияния кислорода на растворимость компонентов конструкционных материалов натрий – калиевый сплав близок к натрию.


Совместимость керамических материалов с двухкомпонентными
металлическими расплавами

При рассмотрении возможности применения керамического материала в условиях, когда последний находится в контакте с жидким металлом или его парами, удобным критерием является равновесная концентрация неметаллического компонента в жидком металле, при которой химическое соединение стабильно в среде жидкого металла.

Для предварительной оценки совместимости керамических материалов с двухкомпонентными металлическими расплавами в настоящей работе предлагается методика расчета равновесной концентрации неметаллического компонента во всем концентрационном диапазоне бинарной системы.

Рассматривая термодинамическое равновесие между химическим соединением АmBn и жидкометаллическим расплавом, содержащим хLi мольных долей лития и хPb мольных долей свинца, было получено следующее выражение для расчета равновесной концентрации компонента В в расплаве

 .          (7)

Вычисления  проводились в приближении субрегулярных растворов для трехкомпонентных систем, используя следующее уравнение

 ,    (8)

где gA(Li-Pb-A) – коэффициент активности металлического компонента А в трехкомпонентной системе Li-Pb-A; хLi и хPb – мольные доли лития и свинца в трехкомпонентной системе Li-Pb-A; DЕ = ЕLi-A + EPbAELi-Pb; ЕLi-A , ELi-B и ELi-Pb – энергии взаимообмена для соответствующих пар атомов в бинарных системах (для ELi-Pb учитывалась зависимость от состава расплава). Вычисления значений коэффициента активности неметаллического компонента В в системе Li – Pb – B проводились по уравнениям координационно-кластерной модели для трехкомпонентных расплавов.

Результаты расчета для системы SiC – расплав Li17Pb83 (рис. 8) показали, что при температурах, не превышающих 1150 К, равновесная концентрация углерода для SiC ниже концентрации насыщения углерода в расплаве. Это означает, что при содержаниях углерода, превышающих пороговое (выше сплошной кривой), соединение SiC должно быть стабильным в Li17Pb83 при этих температурах. При температуре 932 К существует область концентраций углерода в жидкой фазе, где соединение SiC является стабильным во всем концентрационном интервале двойной системы Li–Pb (рис. 9).

С помощью уравнений координационно-кластерной модели проанализировано влияние температуры на характер межатомных взаимодействия в расплавах Li-Pb. Модель позволяет оценивать долю атомов сi углерода, находящихся в кластерах определенного состава С(Lij Pbk Sil). Вероятности различных кластеров рассчитывались при очень низкой концентрации кремния в расплаве (хSi = 10-10 мольн. долей), которая близка к равновесной для соединения SiC при температурах 800-900 К. Как следует из результатов расчета, доля межатомных связей типа литий-углерод возрастает с понижением температуры расплава эвтектического состава. Вероятность образования кластеров различного состава, содержащих атом кремния в первой координационной сфере атома углерода, также возрастает при низких температурах расплава (рис. 10). Величины удельного параметра взаимодействия  с понижением температуры изменяются аналогичным образом. Равновесная концентрация углерода для соединения SiC растет с повышением температуры, что свидетельствует о снижении термодинамической стабильности этого соединения в расплавах. Таким образом, наблюдается корреляция между равновесной концентрацией углерода в жидком металле для системы SiC - расплав Li-Pb и количеством парных связей между атомами углерода и кремния в этом расплаве.


Рис. 8. Температурная зависимость минимальной концентрации
углерода N С в расплаве Li 17 Pb 83, необходимой для образования SiC ;
1 – концентрация, соответствующая равновесию SiC – Li 17 Pb 83;
2 – концентрация насыщения углерода в Li 17 Pb 83, рассчитанная по уравнению ОККМ; 3 – концентрация насыщения углерода в Li 17 Pb 83, рассчитанная по модели идеальных растворов

Рис. 9. Зависимость минимальной концентрации углерода, необходимой для образования SiC от состава для двойной системы Li - Pb при 932К;
1 – концентрация, соответствующая равновесию SiC – расплав;
2 – концентрация насыщения углерода в расплаве, рассчитанная по уравнению ОККМ.


Рис. 10. Зависимость удельного параметра взаимодействия и доли атомов углерода ci , находящихся в конфигурации С(Lij Pbk Sil), от температуры для расплава Li 17 Pb 83, содержащего х Si =10-10 мольных долей:
1 -  ; 2 – с i для С(Li1Pb2Sil);3 - с i для С(Li2Pb1Si1);4 - с i для С(Li0Pb3Sil);5 - с i для С(Li3Pb0Sil)

Имеющиеся в литературе экспериментальные данные о коррозионной стойкости карбида кремния в чистом литии свидетельствуют о том, что это соединение разлагается в жидком металле при температуре выше 900ОС (Ghoniem N.M. – J. Nucl. Mater. - 1992.- V.191-194.- Part A. - P. 515). Таким образом, можно констатировать удовлетворительное согласие результатов расчета с экспериментальными данными.




2019-07-03 222 Обсуждений (0)
Взаимодействие металлических конструкционных материалов с жидкими металлами, содержащими неметаллические примеси 0.00 из 5.00 0 оценок









Обсуждение в статье: Взаимодействие металлических конструкционных материалов с жидкими металлами, содержащими неметаллические примеси

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (222)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)