Мегаобучалка Главная | О нас | Обратная связь


Свойства промышленных полиэтиленов



2019-07-03 207 Обсуждений (0)
Свойства промышленных полиэтиленов 0.00 из 5.00 0 оценок




Введение

 

Сегодня полимерные материалы широко используются практически во всех отраслях промышленности и в быту, в том числе и для изготовления ответственных и высоконагруженных изделий. Мировой объем производства полимерных материалов постоянно растет.

Все многообразие полимерных материалов подразделяют на 3 больших класса. Первый – это материалы общетехнического назначения: полиэтилен, полипропилен, полистирол и его сополимеры, поливинилхлорид и др. Эти материалы производятся в мире десятками миллионов тонн. Они имеют относительно невысокую цену, темпы роста объемов их производства – 3 – 4% в год. Второй класс – это материалы инженерно-технического назначения. К этому классу принято относить всего шесть типов полимеров: полиамиды, поликарбонат, полиацетали, полибутилентерефталат, модифицированный полифениленоксид и термоэластопласты. Объемы их современного производства достигли в 2000 г. 4,7 млн. тонн, а ежегодные темпы роста за последние пять лет находятся в пределах 5–7%. Третий класс – это суперконструкционные материалы. Объем их производства относительно невелик и измеряется в сотнях тысяч тонн. К этому классу относят полисульфон и его модификации, полифениленсульфид и поли-эфиримиды, полиэфирэфиркетон и др. [1, 2]. Наибольший объем производства базовых термопластов приходится на полиэтилен.

К числу самых крупнотоннажных полимеров относится полиэтилен низкого давления. В настоящее время ПЭНД (в том числе линейный полиэтилен низкой плотности ЛПЭНД) производят на 140 заводах, принадлежащих 114 фирмам. США принадлежат несколько более 40% мировых мощностей ПЭНД, Японии – около 7%.

Мощности по производству полиэтилена на разных предприятиях составляют от 25 тыс. т в год до 400 тыс. т в год и часто зависят от объемов производства этилена на данном предприятии [3]. Предприятия, производящие синтетические полимерные материалы (смолы, реактопласты, термопласты), базируются в основном, на непрерывных технологических процессах.

Сырьем для производства синтетических полимерных материалов, как правило, служат продукты нефтепереработки, нефтехимии и газопереработки. В последние 10-15 лет проявилась тенденция организации производства синтетических полимерных материалов не на самостоятельно функционирующих предприятиях, производящих только полимерные смолы и пластмассы, а как продолжение технологической цепочки предприятий нефтепереработки и нефтехимии. Такие предприятия, производя мономеры и полупродукты из нефти и газа, перестают поставлять мономеры как товарную продукцию, а организуют производство полимеров как заключительный этап технологической цепочки или даже производя из полимерного материала готовые изделия промышленного назначения и поставляя в качестве готовой продукции не мономеры и не гранулированные полимерные материалы, а изделия из полимерных материалов.

Несмотря на постоянное снижение уровня производства за прошедшие годы, производство термопластов пока остается рентабельным. Хотя уровень рентабельности также постепенно снижается, даже при сохранении существующего парка оборудования (хотя и значительно устаревшего) и существующих в настоящее время объемов и поставщиков сырья, производство термопластов останется рентабельным еще около 10 лет. Важным фактором сохранения производства термопластов является замена устаревшего оборудования и устаревших технологических процессов на современные, обеспечение сырьевой базы и снижение себестоимости продукции.

В современных рыночных условиях актуальным вопросом для предприятия является расширение ассортимента, при сохранении конкурентоспособности продукции, то есть увеличение прочностных характеристик и улучшение внешнего вида изделий.

В связи с этим в данном дипломном проекте предлагается совершенствование производства труб из полиэтилена низкого давления путем применения суперконцентратов для окрашивания в различные цвета с целью улучшения их внешнего вида, прочностных характеристик и увеличение ассортимента.


Технологический раздел

Информационный анализ

Свойства промышленных полиэтиленов

Исходным сырьём для получения полиэтилена является этилен. При нормальных условиях этилен – бесцветный газ с температурой кипения равной 103,80С. Предел взрываемости 3–34% объемных. Устойчив при нагревании до температуры 3500С, выше разлагается с выделением метана, ацетилена, водорода и твёрдого углерода. Растворим в спиртах, дихлорэтане, эфире, плохо растворим в воде.

Получают пиролизом непредельных углеводородов при 870–8300С. Для этой цели используют попутные газы, выделяющиеся при добыче нефти, природные углеводородные газы. В настоящее время для производства полиэтилена применяют три технологии:

1. Полимеризация этилена при высоком давлении (ПЭВД).

Осуществляется по реакции радикальной полимеризации этилена в конденсированной газовой фазе мономера в присутствии радикальных инициаторов (кислород, органические перекиси) при давлении 150–300 МПа и температуре 200–2800С. Такой полиэтилен называют полиэтиленом высокого давления или низкой плотности. Он имеет плотность r = 920–930 кг/м3, молекулярную массу от 80000 до 500000, степень кристалличности 50–65%. Высокомолекулярный полиэтилен образуется только при высокой концентрации этилена, чему способствует создание высокого давления (при давлении реакции концентрация этилена выше примерно в 450–500 раз, чем при атмосферном давлении).

2. Полимеризацию этилена при низком давлении (ПЭНД).

Полимеризация осуществляется в среде органического растворителя при давлении, не превышающем 0,5 МПа, и температуре ниже 800С. Катализаторами являются комплексы Циглера–Натта.

Большой интерес для промышленности представляет радиационная полимеризация этилена, протекающая под действием γ-лучей при 13–20 атм. и комнатной температуре.

3. Полимеризацию этилена при среднем давлении (ПЭСД).

Полимеризацию проводят в среде разбавителя при 3,5–4,0 МПа и 125–1500С на окисно-металлических катализаторах.

В зависимости от условий полимеризации различают три вида полиэтилена [4]: полиэтилен высокого давления (ПЭВД, или низкой плотности – ПЭНП), полиэтилен среднего давления ПЭСД и полиэтилен низкого давления ПЭНД (или высокой плотности, ПЭВП). Несмотря на то, что различные виды полиэтилена получают из одного и того же мономера, они представляют собой совершенно различные материалы (табл. 1.1.). Это объясняется разным строением макромолекул и разной способностью к кристаллизации.

Например, ПЭНП состоит из разветвленных макромолекул и представляет собой мягкий и эластичный материал, ПЭСД и ПЭНД (ПЭВП), имеющие линейное строение и довольно высокую степень кристалличности (85–90%), – жесткие продукты. Существенным недостатком полиэтиленов является быстрое старение под действием кислорода и УФ-излучения. Старение можно резко замедлить введением антиоксидантов, светостабилизаторов или химическим модифицированием [5].

Полиэтилен хорошо сваривается, что позволяет легко создавать сложные конструкции из отрезков изделий, кроме того, он широко применяется для защиты металлов методом газопламенного напыления.

Полиэтилен низкой плотности – ПЭНП – полупрозрачный эластичный материал молочного цвета с хорошими диэлектрическими свойствами и низким водопоглощением [6–8].


Таблица 1.1

Свойства

Полиэтилен

ВД НД СД
Число групп СН3 на 100 атомов углерода (разветвлённость) 21,6 5,0 1,5
Количество двойных связей на 1000 атомов углерода 0,4 – 0,6 0,4 – 0,7 1,1 – 1,5
Степень кристалличности, % 55 85 90
Плотность, кг/м3 910 – 920 940 – 950 950 – 970
Температура плавления, 0С 105 – 108 120 – 128 127 – 130
Теплостойкость (метод НИИПП), 0С 108 –110 120 – 128 128 – 133
Разрушающее напряжение (растяжение), МПа 12 – 16 22 – 32 25 – 40
Твёрдость по Бриннелю, МПа 0,14 – 0,25 0,45 – 0,58 0,56 – 0,65

 

Свойства полиэтилена

Благодаря молекулярной структуре с разветвлениями разной длины цепи ПЭНП называется «полиэтиленом с разветвленной цепью». Материал относится к полукристаллическим и имеет степень кристалличности не выше 50–60%. Температура плавления ПЭНП 103–110°С, плотность 0,917–0,923 г/см3, прочность при растяжении 11,5–15,0 МПа, относительное удлинение при разрыве 550–600%, разрушающее напряжение при изгибе 12,0–20,0 МПа, предел текучести при растяжении 9,5–14,0 МПа, секущий модуль эластичности 90–215 МПа. Водопоглощение за 30 сут составляет не более 0,020%. Максимальная температура эксплуатации 60°С.

Для экструзии используют высоковязкие (экструзионные) марки полимера с ПТР 0,3–2,0 г/10 мин (Г – 190 X; Р = 2,16 кгс).

Химической модификацией ПЭНП получен линейный полиэтилен низкой плотности (ЛПЭНП, PE-LLD, L-LDPE), который представляет собой легкий эластичный кристаллизующийся материал с теплостойкостью по Вика до 118°С. Имеет большую стойкость к растрескиванию, ударную прочность и теплостойкость, чем ПЭНП, биологически инертен [4, 7–9].

Применяется в основном для производства плоской и рукавной упаковочной пленки, емкостей, контейнеров, в том числе и для пищевых продуктов.

В России производство отечественного ЛПЭНП в промышленных масштабах в настоящее время отсутствует. Свойства и производители зарубежных марок приведены в [8–9], например, Clearflex, Flexirene (Polymen Europa), Dowlex (Dow), Escorene (ExxonMobil), LLDPE(Borealis), Marlex(CPC), Sclair (NOVA Chemicals), SeetecLLDPE(Hyundai). Отечественный сополимер этилена с винилацетатом, получаемый совместной полимеризацией этилена и винилацетата в массе под высоким давлением, известен под торговой маркой Сэвилен, который выпускается в гранулированном виде (как базовые марки, так и композиции со стабилизаторами). Основной производитель в России – Казанский завод нефтеорганического синтеза. Сэвилен имеет большую эластичность и прозрачность, чем ПЭНП; его свойства зависят, в первую очередь, от содержания винилацетата: с его повышением кристалличность, прочность при растяжении, твердость и теплостойкость уменьшаются, а плотность, эластичность, прозрачность и адгезия возрастают. Для экструзии применяют марку 11104–030 с содержанием винилацетата 5–7%. Марка имеет плотность 0,925 г/см3, ПТР 1–5 г./10 мин, прочность при растяжении 11,3 МПа, относительное удлинение при разрыве 600%, теплостойкость по Вика 85–95°С [10]. Широко используется при производстве витых шлангов разного диаметра из Z-образного профиля. Основное назначение таких шлангов – воздухоотсосы от различного оборудования.

Полиэтилен высокой плотности – ПЭВП – полупрозрачный высококристаллический материал молочного цвета, обладает высокой упругостью расплава, имеет хорошую стойкость к большинству органических и неорганических кислот, щелочей и солей. Недостаточно стоек к хлорированным углеводородам и материалам-окислителям. Температура плавления 125–135°С, плотность 0,95–0,96 г./см3, температура размягчения по Вика 120–125°С, предел текучести при растяжении 22–25 МПа, относительное удлинение при разрыве 250–700%, модуль эластичности при изгибе 680–850 МПа. Водопоглощение за 30 сут не более 0,03 – 0,04%. Максимальная температура эксплуатации 60°С [4, 5, 7]. Для экструзии профилей применяют высоковязкие марки ПЭВП с ПТР 0,3–2,4 г/10 мин (Т= 190°С, Р= 5 кгс). Отечественные марки ПЭВП соответствуют ГОСТу 16638–77. Материал применяется для производства профилей относительно несложной формы.

Свойства ПЭВП связаны с молекулярной массой и кристалличностью полимера. При переработке молекулярную массу характеризует текучесть расплава (или его ПТР), а степень кристалличности – плотность изделия. Чем уже распределение по молярным массам (полидисперсность), тем хуже перерабатываемость, меньше остаточные напряжения в изделии и выше прочность расплава и предельная вытяжка.

Высокомолекулярный полиэтилен (ВМПЭ, PE-HMW, PE-UHMW).Высокомолекулярный полиэтилен (ВМПЭ) обладает комплексом свойств, существенно отличающих его от «обычного» ПЭВП [10, 11]:

¨ низкий коэффициент трения в сочетании с высокой механической прочностью позволяет использовать ВМПЭ для изготовления лыжной ленты, разнообразных профильных направляющих и подложек для транспортеров и конвейеров в пищевой и холодильной промышленности, листов для футеровки оборудования в горнорудной промышленности, кузовов автомобилей, бесшумных не смазываемых шестерней, деталей эндопротезов, блоков в виде стержней и плит для дальнейшей механической обработки и изготовления втулок, опор, направляющих;

¨ высокая химическая стойкость позволяет применять ВМПЭ для изготовления деталей насосов в химической промышленности (взамен фторпластов), прокладок для агрессивных сред, сепараторов, аккумуляторов взамен мипоры;

¨ биологическая инертность и свойства, допускающие возможность стерилизации материала, позволяют применять ВМПЭ в медицинской и пищевой промышленности.

Показатели качества ВМПЭ, производителем которого в России является Томский нефтеперабатывающий комбинат, соответствуют ТУ 2211–068–057 96653–98 и имеют следующие значения: плотность не менее 0,936 г/см3, массовая доля золы не более 0,05–0,10%, содержание летучих веществ не более 0,25–0,50%, прочность на разрыв не менее 30 МПа, относительное удлинение при разрыве не менее 250% [11].

ВМПЭ выпускают в виде порошка без добавок (базовая марка) или с добавками по рецептурам, указанным в ГОСТе 16338.



2019-07-03 207 Обсуждений (0)
Свойства промышленных полиэтиленов 0.00 из 5.00 0 оценок









Обсуждение в статье: Свойства промышленных полиэтиленов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (207)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)