Мегаобучалка Главная | О нас | Обратная связь


Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.



2019-07-03 320 Обсуждений (0)
Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. 0.00 из 5.00 0 оценок




Введение

 

Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.

Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.

 

Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений

         
   


x’ = f ( t , x )

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (1)

     
 


с начальными условиями    x ( t0 ) = x0                                                     (2)  

где x = ( x1, x2, ... , xn ) - n - мерный вектор; t Î I = [t0, + ¥   [ - независимая переменная, по которой производится дифференцирование;

                 
       


f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция.

   Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.

   

     x

 

 

   0                                                t

                          Рис.1                                   

Так как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую вектор-функцию x ( t ) - как движение точки в зависимости от времени в пространстве Rn+1 (рис.1)

Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные ( t0 , x0 ) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) =  x ( t ; t0 , x0 ). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0 ) , приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные ( t0 , x0 ) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.

Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) =  x ( t ; t0 , x0 ) , вызванное отклонением D x0 начального значения x0 , будем записывать следующим образом:

| x ( t ; t0 , x0 + D x0 ) - x ( t ) | = | x ( t ; t0 , x0 + D x0 ) - x ( t ; t0 , x0 ) |.

 

Определение 1. Решение x ( t ) =  x ( t ; t0 , x0 ) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно по x0 на интервале      I = = [ t0, + ¥ [ , т.е. " e > 0 $ d > 0 такое, что " D x0

| D x0 | £ d Þ | x ( t ; t0 , x0 + D x0 ) - x ( t ) | £ e   " t ³ t0.

Если, кроме того, отклонение решения x ( t ) стремится к нулю при t ® + ¥ для достаточно малых D x0 , т.е. $ D > 0 " D x0.

| D x0 | £ D Þ | x ( t ; t0 , x0 + D x0 ) - x ( t ) | ® 0 , t ® + ¥ .      (3)

то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).

Аналогично определяются различные типы устойчивости решения в отрицательном направлении.

Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 + D x0 ) , близкие в начальный момент t0 к решению x ( t ) (т.е. начинающиеся в пределах d - трубки ) , не выходят за пределы e - трубки при всех значениях t ³ t0 .

   

     x

 

 

   0                                                t

                          Рис.2                                   

 


2) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в D - трубке, с течением времени неограниченно приближается к решению x ( t ) (рис.2). Трубка радиуса D называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0  за пределами области притяжения, но в пределах d - трубки, не покидает e - трубку, хотя может и не приближаться к решению x(t).

 

Определение 2. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется неустойчивып по Ляпунову в положительном направлении (или неустойчивым), если оно не является устойчивым в положительном направлении.

Аналогично определяется неустойчивость в отрицательном направлении.

Комментарий к определению 2. Геометрически неустойчивость по Ляпунову означает, что среди решений, близких в начальный момент t0 к решению х ( t ) , найдется хотя бы одно, которое в некоторый момент t1 ( свой для каждого такого решения) выйдет за пределы e - трубки (рис.3).

Приведем примеры из механики, иллюстрирующие определения различных типов устойчивости для одномерного случая, т.е. n = 1.

Рассмотрим маятник, состоящий из точечной массы m, укрепленной на невесомом стержне длиной l (рис.4). Выведем маятник из состояния I, отклонив стержень на угол a ; тогда, как известно из опыта, он будет стремиться занять вновь положение I. Если пренебречь сопротивлением окружающей среды, то маятник будет колебаться возле положения I сколь угодно долго с амплитудой, равной начальному отклонению, - это модель устойчивого положения равновесия. Если же учитывать сопротивление окружающей среды, то амплитуда колебаний маятника будет уменьшаться и в итоге он снова займет положение I - это модель асимптотически устойчивого положения равновесия. Если маятник находится в положении II, то малейшее его смещение приведет к удалению маятника от состояния II - это модель не устойчивого положения равновесия.

 

   

     x

 

 

   0                                                t

                          Рис.3                                                        Рис.4

 

Исследование устойчивости произвольного решения x ( t ) системы (1) всегда можно свести к исследованию устойчивости нулевого решения некоторой преобразованной системы. Действительно, в системе (1) произведем подстановку y ( t ) = x - x (t). Тогда получим систему

                                          y’ = F ( t, y ).                                    (4)

где F ( t , y ) = f ( t , y ( t ) + x ( t ) ) - f ( t , x ( t ) ) , F (t, 0) º 0 " t ³ t0.

Решению x ( t ) системы (1) соответствует нулевое решение y (t) º 0 системы (4).

В дальнейшем будем предполагать, что система (1) имеет нулевое решение, т.е. f ( t , 0 ) = 0 " t ³ t0, и ограгничимся исследованием устойчивости нулевого решения. Переформулируем определения различных типов устойчивости для нулевого решения x ( t ) º 0 системы (1).

 

Определение 3. Нулевое решение x ( t ) º 0 системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если " e > 0 $ d = d ( e ) > 0 такое, что " x0

    | D x0 | £ d Þ | x ( t ; t0 , x0 ) | £ e   " t ³ t0.

Если кроме того,

$ D > 0   " x0   | D x0 | £ D Þ | x ( t ; t0 , x0 ) | ® 0 , t ® + ¥ ,

то решение x ( t ) º 0 системы (1) называется асимптотически устойчивым в положительном направлении ( или асимптотически устойчивым ) .

Определение 4.     Нулевое решение x ( t ) º 0 системы (1) называется неустойчивым по Ляпунову в положительном направлении (или неустойчиво), если оно не является устойчивым в положительном направлении, т.е.

$ e > 0 $ t1 > t0 " d > 0 x0 ¹ 0 | x0 | £ d Þ | x ( t ; t0 , x0 ) | > e .

Геометрическая интерпритация устойчивости, асимптотической устойчивости и неустойчивости нулевого решения x ( t ) º 0 системы (1) дана соответственно на рис.5-7.

 

 

 

 

x

 

 

                                                     t

0

 

 

Рис.5

x

 

 

                                                     t

0

 

 

Рис.6

 

 

x

 

 

                                                     t

0

 

 

Рис.7

 

 

2. Устойчивость решения автономной системы. Устойчивость решения системы линейных дифференциальных уравнений с постоянными коэффициентами. 

Система обыкновенных дифференциальных уравнений называется автономной (или стационарной, или консервативной, или динамической), если независимая переменная не входит явно в систему уравнений.

Нормальную автономную систему n - го порядка можно записать в векторной форме :

                              dx / dt = f ( x ).                                                                (5)

Рассмотрим задачу Коши для системы (5) с начальными условиями (2). В дальнейшем предполагаем, что задача Коши (5), (2) удовлетворяет условиям теоремы существования и единственности.

Пусть x = x ( t ) - есть решение системы (5). Направленная кривая g , которую можно параметрически задать в виде xi = xi ( t ) ( i = 1, ... , n ), называется траекторией (фазовым графиком) системы (5) или траекторией решения x = x ( t ). Пространство Rn с координатами ( x1 , ... , xn ), в котором расположены траектории системы (5), называется фазовым пространством автономной системы (5). Известно, что интегральные кривые системы (5) можно параметрически задать в виде t = t , x1 = x1 ( t ), ... , xn = xn ( t ). Следовательно, интегральная кривая принадлежит пространству Rn+1 с координатами ( t , x1 , x2 , ... , xn ) , а траектория является проекцией интегральной кривой на пространство Rn параллельно оси t. Проиллюстрируем это для случая n = 2 , т.е. когда Rn+1 - трехмерное пространство, а фазовое пространство Rn - двумерная плоскость. На рис.8,а изображена интегральная кривая, заданная параметрическими уравнениями t = t, x1 = x1 ( t ) , x2 = x2 ( t ), на рис.8,б - ее проекция на плоскость, т.е. траектория, заданная параметрическими уравнениями x1 = x1 ( t ) , x2 = x2 ( t ). Стрелкой указано направление возрастания параметра t.

      

                         x2                                                                                              x2

                              

 

                   0                                                        t             0        x1

 

 

       x1        

                     а)                                   Рис.8                     б)

                    

Определение 5. Точка ( a1, a2 , ... , an ) называется точкой покоя (положением равновесия) автономной системы (5), если правые части f1 , f2 , ... , fn системы (5) обращаются в этой точке в нуль, т.е. f (a) = 0, где a = ( a1 , a2 , ... , an ) , 0 = ( 0 , 0 , ... , 0 ) .

Если ( a1 , ... , an ) - точка покоя, то система (5) имеет постоянное решение x ( t ) = a. Как известно, исследование устойчивости любого, а значит, и постоянного решения a можно свести к исследованию устойчивости нулевого решения. Поэтому далее будем считать, что система (5) имеет нулевое решение x ( t ) º 0 , т.е. f ( 0 ) = 0, и точка покоя совпадает с началом координат фазового пространства Rn. В пространстве Rn+1 точке покоя соответствует нулевое решение. Это изображено на рис.8 для случая n = 2.

Таким образом, устойчивость нулевого решения системы (5) означает устойчивость начала координат фазового пространства системы (5), и наоборот.

Дадим геометрическую интерпретацию устойчивого, асимптотически устойчивого и неустойчивого начала плоскости, т.е. когда n = 2. Для этого следует спроектировать аналоги рис.5-7 в двумерном случае на фазовую плоскость R2, причем проекциями e - трубки и d - трубки являются окружности с радиусами e и d . Начало x = 0 устойчиво, если все траектории, начинающиеся в пределах d - окружности, не покидают e - окружность " t ³ t0 (рис.9) ; асимптотически устойчиво, если оно устойчиво и все траектории, начинающиеся в области притяжения D , стремятся к началу (рис.10) ; неустойчиво, если для любой e - окружности и всех d > 0 существует хотя бы одна траектория, покидающая ее (рис.11).

Нормальная система линейных дифференциальных уравнений с постоянными коэффициентами, имеющая вид

                                          dx / dt = A x,                                                         (6)

где A - постоянная матрица размера n ´ n , является частным случаем системы (5). Следовательно, для этой системы справедливы все сделанные выше утверждения об автономных системах.

    

                     x2

 

 

 

 


                      0                   x1 

 

 

                    Рис.9

    

                     x2

 

 


                      0                   x1 

 

 

                   Рис.10

 

    

                     x2

 

 

 

 


                      0                   x1 

 

 

                    Рис.11

 

 

 



2019-07-03 320 Обсуждений (0)
Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. 0.00 из 5.00 0 оценок









Обсуждение в статье: Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (320)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)