Мегаобучалка Главная | О нас | Обратная связь


Компьютерный метод обработки дифракционных спектров



2019-07-03 205 Обсуждений (0)
Компьютерный метод обработки дифракционных спектров 0.00 из 5.00 0 оценок




Описанный алгоритм анализа сложной дифракционной картины, наблюдаемой при рентгенофазовом исследовании структуры углей, положен в основу автоматизированного подбора параметров отдельных компонентов (рентгенографических фаз), обеспечивающих суммарно воспроизведение экспериментальных дифракционных спектров образцов. При этом методика подбора формально аналогична поиску кинетических констант при описании динамики преобразований структуры ОМУ (2) или при подгонке ИК-спектров по набору полос поглощения [14].

Теоретический дифракционный спектр представляется суммой N рефлексов, обязанных дифракции от N рентгенографических фаз:

(3)

где Аj— интенсивность отражений для i-той фазы, описываемая колоколообразной функцией с параметрами θi (положение в угловой шкале) и Δi (полная ширина на половине высоты пика). Как уже отмечалось, в случае углеводородных фаз функции Аj (θi, Δi) представляют собой гауссианы:

(4)

Здесь hi — высота пика; σi — среднеквадратическое отклонение, связанное с шириной пика соотношением σi = Δi /(2 · 1,177). Выражение Аj (θ) для графитоподобной фазы представлено составной функцией, включающей гауссианы нижней части полосы и верхней (главной) части рефлекса. Для нижней части:

(5)

где σгр.1 относится к левой (широкой) и правой (узкой) компонентам гауссиана соответственно при θ<θгр.1 и θ> θ гр.1.

Аналогично для верхней части рефлекса:

(6)

Отметим, что в выражениях (5) и (6) величина θгр одна и та же, характеризующая положение в шкале в общего рефлекса графитоподобной фазы. Возможность количественной передачи функциями (5) и (6) экспериментальных отражений 002, полученных описанным в предыдущем разделе методом, подтверждает обработка данных для ряда углей разных стадий метаморфизма (см. таблицу).

Марка угля

Стадия графитизации по [1]

Параметры компонент гауссиана

θгр hгр.2 а + b а/(а + b) h с + d с/(с+ d) h1+h2
Д К1 11,66 44.9 5,69 0,585 108,5 3,65 0,515 153,4
Г К2 12,17 50,6 5,11 0,661 126,2 2,64 0,553 176,8
Г КЗ 12,25 34,9 5,52 0,559 130,9 2,85 0,594 165,8
Ж К4 12,38 50,9 4.91 0,519 126,8 2,53 0,607 177,7
К К4 12,55 43,1 3,44 0,594 137,9 2,20 0,600 181,0
к А1 12,64 79,1 4,07 0,616 106,0 2,19 0,510 185,1
А А4 12,77 39,8 4,57 0,627 159,5 1,69 0,627 199,3
А   12,80 41,6 3,08 0,625 152,0 0,89 0,603 193,6

На рис.1 в качестве примера приведено разложение дифракционного максимума 002 графитоподобной фазы угля коксовой стадии К4 при θгр = 12,55°. Коэффициенты асимметрии составных гауссианов для нижней и верхней частей рефлекса можно определить из выражений (см.рис.1):

(7)

Приведенные в таблице данные указывают на закономерное изменение параметров для компонент гауссиана в ряду метаморфизма угля: увеличивается брэгговский угол θгр и общая высота пика h1+h2, возрастает анизотропия и снижается ширина рефлекса. Тенденцию изменения последней (по компонентам составного гауссиана) иллюстрирует рис.2. Закономерности изменения параметров учитываются при проведении компьютерной обработки дифракционных спектров углей с уточнением параметров, оцениваемых вручную на первом этапе. Это позволяет организовать быстро сходящийся итерационный процесс, приводящий к количественному описанию сложной дифракционной картины для различных углей.

Пример компьютерной расшифровки спектра представлен на рис.3 (для длиннопламенного угля). Расхождения между теоретическими и экспериментальными профилями рефлексов в диапазоне углов θ = 2-3° не превышают 0,5 % от максимальной интенсивности (спектры визуально неотличимы). По окончании обработки спектров выполняют интегрирование по контурам рефлексов отдельных фаз, что необходимо для расчета рентгенофазового состава угля.

Рис.1. Построение рефлекса 002 графитоподобной фазы коксового угля на основе составных гауссианов нижней 1 и верхней частей рефлекса. Сумма гауссианов 3 совпадает с экспериментальным профилем при подборе полуширин: a, b и c, d соответственно для 1 и 2

Аналогичный подход применим и для анализа изменений структуры при различных воздействиях на угли.

Рис. 2. Зависимость угловой ширины d компонентов гауссианов для отражений 002 графитоподобной фазы от брэгговского угла θ . Компоненты: 1 — нижняя часть (2а); 2— верхняя часть (2с) рефлекса

Рис. 3. Разложение дифракционного спектра (линия без обозначения) длиннопламенного угля стадии графитизации К1 на фазовые компоненты с межплоскостными расстояниями d, нм: 1 - 0,983; 2 - 0.583; 3 - 0.382; 4 - 0.226

Вывод

Методика рентгенографического количественного фазового анализа органической массы углей и продуктов их переработки состоит из предварительного анализа углового распределения фаз и этапа - компьютерной обработки дифракционных спектров с определением параметров каждого фазового компонента и рентгенофазового состава изучаемого объекта. Получаемые результаты являются основой для разработки научных принципов оценки фазового состава и структурных параметров углей в целях совершенствования технологии переработки горючих ископаемых с рентгенографическим контролем при создании синтетических углеродистых веществ с заданными физико-химическими и механическими свойствами.

Список литературы

1. Королев Ю.М. Рентгенографическое исследование гумусового органического вещества // ХТТ. 1989. № 6. С.11—19.

2. Гагарин С.Г., Королев Ю.М. Преобразование рентге-нофазовой структуры органической массы уг-ля...//Кокс и химия. 1994. №11. С.2—6.

3. Королев Ю.М., Моисеев ЮЛ., Попов В.Т. Рентгенографические критерии в установлении подобия фазового состава природных и искусственных углеродистых веществ//Накопление и преобразование органического вещества современных и ископаемых осадков; Сб.науч.ст. — М.: Наука, 1990. С.140—145.

4. Королев Ю.М. Рентгенографическое исследование органического вещества сапропелевого типа//Ге-ол.нефти и газа. 1989. № 9. С.50—53.

5. Voiglaeuder-Tetzner G.//Z.Phys. 1958. Bd 150. № 2. S.215—230.

6. Diamond RD.//Acta Cryst. 1957. V.10. P.359—364; 1958. V 11. P.129—138.

7. Новиков Г.Б., Егоров В.К., Соколов ЮЛ. Пирротины. — М.: Наука, 1988.— 185 с.

8. Чичагов А.В., Сипавина Л.В. Рентгенографические параметры твердых растворов. — М.: Наука, 1982. — 191 с.

9. Королев Ю.М. Итерационный метод разложения сложных дифракционных максимумов//Материалы XI Всес.совещ. по рентгенографии минерального сырья. — Свердловск: АН СССР. 1989. Т.1 С.41.

10. Warren B.FJIPhys. Rev. 1941. V.59. P.693—698

11. Biscoe J. Warren 8.F.//J.Appl.Phys. 1942. V.13. P.364—371

12. Brindley G.W., Mering J.//Acta Cryst. 1951. V.4. Р.441 — 447

13. Дубовик В.И., Носов Г.И., Четверикова О.П. Преобразование органического вещества пород.//ХТТ. 1976. № 5. С.94—101.

14. Гагарин С.Г., Гладун ТТ., Фриесен В.И., Микаэлан К.Г. Моделирование инфракрасных спектров мацералов.//Кокс и химия. 1993. № 4. С.6-9.

 



2019-07-03 205 Обсуждений (0)
Компьютерный метод обработки дифракционных спектров 0.00 из 5.00 0 оценок









Обсуждение в статье: Компьютерный метод обработки дифракционных спектров

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (205)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)