Мегаобучалка Главная | О нас | Обратная связь


Распространенность химических элементов. Основные классы неорганических соединений



2019-07-03 276 Обсуждений (0)
Распространенность химических элементов. Основные классы неорганических соединений 0.00 из 5.00 0 оценок




 

РАСПРОСТРАНЁННОСТЬ ЭЛЕМЕНТОВ

относительное содержание элементов в космич. веществе. Часто под Р. э. подразумевают распространённость не только хим. элементов, но также и их изотопов по отдельности, т. е. более общее понятие - распространённость нуклидов (РН). Среднюю РН определяют по совокупности данных геохимии, космохимии и астрофизики тремя осн. методами: исследованием состава образцов земного, метеоритного и лунного вещества; изучением спектров эл.-магн. излучения Солнца, звёзд и межзвёздной среды; определением содержания нуклидов в солнечных и галактич. космических лучах.

Рис. 1. Относительная распространённость нуклидов lgN (N- число атомов, IgNSi = 6) в зависимости от атомной массы А (по А. Камерону). Изотопы одного и того же элемента (вплоть до Ge) соединены прямыми линиями. Символы указывают основные процессы синтеза нуклидов: D - взрывное горение С, О и Si, О - медленный захват нейтронов (s-процесс), + - быстрый захват нейтронов (r -процесс),  сравнимый вклад s- и r -процессов, 0 - ядерное статистическое равновесие ( е -процесс). Нуклиды, образующиеся в других процессах, отмечены точками. Штриховой линией соединены обойдённые ядра.

 

 

Изотопный состав вещества достаточно хорошо изучен только для Солнечной системы. В Солнце заключена б. ч. массы Солнечной системы. Однако спектральный анализ содержания элементов и нуклидов в солнечной атмосфере не обладает столь большой точностью, как хим., радиохим. и масс-спектроскопич. анализы состава метеоритного и планетного твёрдых веществ. Поэтому содержание нуклидов в метеоритах рассматривается в качестве стандарта при систематизации распространённости большинства элементов.

На рис. 1 в логарифмич. шкале показана РН в Солнечной системе, нормированная на содержание кремния. Приведённые данные получены в осн. из анализа состава метеоритов. Систематизация этих данных выполнена А. Камероном (A. Cameron) в 1982 (см. также табл.). Наиб. распространённость имеет водород (1 Н), примерно на порядок меньше - гелий (4 Не). Т. к. распространённость этих элементов вследствие их летучести на Земле, Луне и метеоритах мала, их действит. содержание в природе оценивают с привлечением косвенных данных: анализа внутр. строения звёзд и состава вещества межзвёздной среды, а также выводов космологии. Водород и гелий имеют в осн. первичное, космологич. происхождение (см. Горячей Вселенной теория). Низкое содержание дейтерия и изотопов Li, Be, В объясняется тем, что эти нуклиды при звёздных темп-pax легко вступают в разл. ядерные реакции.

РН в ср. быстро падает с увеличением массового числа, обнаруживая максимумы для групп С, N, О и Fe ("железный пик") и затем неск. двойных пиков, соответствующих элементам Кг и Sr, Хе и Ва, Pt и Pb, к-рые имеют устойчивые изотопы с магич. числами нейтронов 50, 82, 126 (см. Магические ядра )либо получаются при бета-распаде ядер с такими нейтронными числами.

На рис. 2 та же кривая РН приведена в более компактном виде, без разделения изотопов по процессам их образования. Эта т. н. стандартная кривая РН в Солнечной системе, построенная согласно данным А. Камерона, чётко обнаруживает указанные выше максимумы и является гл. наблюдат. основой теории нуклеосинтеза в природе. Согласно этой теории, осн. процессы образования ядер в природе включают космологич. нуклеосинтез в горячей Вселенной, приводящий к образованию гелия, термоядерное горение лёгких элементов от водорода до кремния в недрах звёзд, синтезирующее элементы "железного пика", а также процессы медленного и быстрого захвата нейтронов ядрами с образованием тяжёлых нуклидов вплоть до изотопов висмута и урана. Особый интерес в теории нуклеосинтеза представляет происхождение т. н. обойдённых ядер. Это изотопы Se, Mo, Cd, La, Dy и др. элементов, к-рые оказываются в стороне от путей нейтронного захвата. Распространённость обойдённых нуклидов примерно на два порядка меньше распространённости ядер, образующихся в процессах нейтронного захвата. Синтез обойдённых ядер объясняют обычно ядерными реакциями с участием протонов (р, у),(r, h) или слабыми взаимодействиями с участием нейтрино, возникающими при взрыве сверхновой. Не исключён также вклад в механизм их синтеза тройного деления ядер с вылетом обогащённых нейтронами лёгких за-ряж. частиц.

 

рис 2

 

Несмотря на то, что состав большинства звёзд, галактик и межзвёздной среды в осн. следует стандартной кривой РН, существуют отклонения от неё, вызванные разл. физ. причинами. Старые звёзды, принадлежащие гало Галактики и шаровым звёздным скоплениям, содержат тяжёлых элементов в 10-103 раз меньше, чем Солнечная система. Это связано с хим. эволюцией галактик. Нек-рые группы звёзд содержат тяжёлые элементы в пропорциях, существенно отличающихся от стандартных распространённостей, таковы, напр., т. н. суперметаллич. звёзды (бариевые, CNO и др.). Существуют также обогащённые и обеднённые гелием звёзды, звёзды с низким содержанием Са. Звёзды с аномальным хим. составом составляют примерно 10% всех звёзд, находящихся вблизи гл. последовательности (см. Герцшпрунга - Ресселла диаграмма )и имеющих темп-ру поверхности от 8000 до 20 000 К (см. Химически пекулярные звёзды).

Появились свидетельства в пользу того, что изотопный состав Солнечной системы также не является столь однородным, как казалось раньше. Открыты аномалии (большинство из них на уровне долей процента) в рас-пространённостях изотопов кислорода, неона, магния. Всё это указывает на многообразие процессов, сформировавших вещество звёзд, галактик и Солнечной системы. Происхождение и распространенность химических элементов в природе

Вам хорошо известно, что различные химические элементы распространены крайне неравномерно. Элемент может быть в сотни и тысячи раз более или менее распространенным, чем его непосредственный сосед по периодической системе. Вы знаете, что атомов одних элементов (кислород, кремний, алюминий, железо и др.) на нашей планете значительно больше, чем атомов других элементов (медь, золото, германий и др.). А откуда вообще взялось такое разнообразие химических элементов? Давайте, прежде чем перейти к рассмотрению вопроса об относительной распространенности химических элементов, кратко познакомимся с существующей точкой зрения по вопросу их происхождения.

По принятой сейчас модели развития Вселенной, формирование слагающего ее вещества является результатом «Большого взрыва». В первые мгновения после него произошло формирование элементарных частиц. Вначале – фотонов, нейтрино, электронов, позитронов. Затем – протонов и нейтронов. После снижения температур ниже уровня 1011о К начинается соединение протонов с нейтронами. Образуются ядра тяжёлых изотопов водорода, возможно также ядер гелия, и небольших количеств Li, Be.

Синтез более тяжёлых атомных ядер начинается после формирования крупных и плотных горячих газовых скоплений – звёзд. Вначале – продолжается образование 4Не. Далее же происходит т.н. «выгорание» гелия:


34Не Ю12С

 

и далее, с присоединением новых ядер гелия: 16O, 20Ne, 24Mg, 28Si, 32S и т.д., вплоть до 56Fe и 58Ni. Обратите внимание, что всё это – именно синтез ядер (нуклеосинтез), а не атомов в целом, так как электроны при столь высоких температурах остаются в свободном состоянии.

Образование ядер промежуточных элементов – результат реакций захвата либо потери протона или нейтрона.

Атомы тяжелее Fe и Ni в обычных процессах внутризвёздного нуклеосинтеза не формируются (не хватает энергии). Эти процессы реализуются только при взрывах «сверхновых» звезд. При наблюдении за сверхновыми в их спектре обнаружены яркие линии, характерные для 254Cf. Интересно, что скорость падения яркости сверхновых (56 суток) очень точно совпадает с периодом полураспада калифорния. Таким образом, формирование ядер атомов от никеля до урана – результат ядерного синтеза в процессе взрыва сверхновых, а также распада калифорния и, возможно, других трансурановых элементов (может, и более тяжёлых, которые нам неизвестны).

Существуют звёзды первого и второго поколения. Только вторые могут содержать в составе элементы тяжелее никеля и иметь планетные системы типа Солнечной.

Итак, в химическом отношении звезды являются довольно простыми системами. Доступная для изучения часть Вселенной имеет в основном водородно-гелиевый состав. Сбылось предсказание английского астрофизика А. Эддингтона, который в начале ХХ века писал, что легче будет разобраться в составе звезд, чем в процессах, окружающих нас на Земле.

Закономерности распространения химических элементов в космосе и на Земле вначале были установлены чисто эмпирически. Было подмечено, что:

Распространенность быстро падает от элементов с низкими атомными номерами (примерно до номера 30), а затем, для более тяжелых элементов остается приблизительно постоянной.

Только десять элементов – H, He, C, N, O, Ne, Mg, Si, S, Fe, атомные номера которых меньше 27, характеризуются высокой распространенностью; из них водород резко преобладает над остальными.

Элементы с четными порядковыми номерами более распространены, чем нечетные (закон Оддо - Гаркинса).

Уточнения к закону Оддо-Гаркинса впоследствии сформулировали А.Е. Ферсман и другие геохимики, но основная суть его остаётся неизменной. Истоки закономерностей – в строении атомных ядер. Первоначально геохимики предполагали, что это может быть как-то связано с различной степенью устойчивости атомных ядер различных элементов. Сейчас признаётся, что это отражает механизм термоядерного синтеза в космических условиях.

Установленные закономерности показывают, что абсолютная распространенность элементов зависит в большей степени от свойств ядра, чем от химических свойств элемента и связана со стабильностью ядер.

А.Е. Ферсман заметил, что все химические элементы можно подразделить на 4 группы с порядковыми номерами, выражающимися формулами:

 

4q 4q+3 4q+2 4q+1,

 

которые составляют 86,19%,12,74%, 0,05%- и 0,02% по массе соответственно

Элемент однозначно характеризуется числом протонов в ядре, но число нейтронов может колебаться. В результате элемент может иметь несколько изотопов, различающихся по массовому числу или атомному весу и стабильностью, но практически неотличимых по химическим свойствам. С другой стороны, существуют изобары, которые являются разными элементами, но имеют одинаковое число нейтронов.

Ядра, содержащие 2, 8, 20, 28, 50, 82, 126 протонов или нейтронов особенно устойчивы. Эти числа называются магическими. Наиболее устойчивы дважды магические ядра, содержащие магическое число и протонов и нейтронов – 4He, 16O, 40Ca. В земной коре элементы с магическими ядрами обладают достаточно высокой распространенностью (за исключением гелия).

Обобщая все данные о распространённости химических элементов и их поведении в геохимических процессах, В.М. Гольдшмидт сформулировал основной закон геохимии:

Содержания химических элементов зависят от строения их атомного ядра, а их миграция – от строения электронных оболочек, определяющих химические свойства элементов. Для геохимии в равной мере важны оба этих аспекта.

Одним из основных законов геохимии является закон Ферсмана-Гольдшмидта, который можно сформулировать следующим образом: Геохимия элемента в земной коре определяется как химическими свойствами, так и величиной кларка.



2019-07-03 276 Обсуждений (0)
Распространенность химических элементов. Основные классы неорганических соединений 0.00 из 5.00 0 оценок









Обсуждение в статье: Распространенность химических элементов. Основные классы неорганических соединений

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (276)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)