Мегаобучалка Главная | О нас | Обратная связь


Бестопливные энергосистемы-источник альтернативной энергии



2019-07-04 198 Обсуждений (0)
Бестопливные энергосистемы-источник альтернативной энергии 0.00 из 5.00 0 оценок




2.1 Электрическое поле земли - источник альтернативной энергии

 

Известно, что планета Земля и ее ионосфера образуют "сферический конденсатор", напряженность создаваемого им электростатического поля составляет в среднем 100 В/м. Это "позволяет смотреть на Землю, как на огромный резервуар электричества..." и дает человечеству надежду, "подключить свои машины к самому источнику энергии окружающего пространства". Одна из возможных конструкций - антенна в виде металлизированного аэростата, поднятого над землей и служащего накопителем электрического заряда. Будучи соединенным с преобразователем энергии с помощью кабеля, этот накопитель способен использовать "дармовую" энергию атмосферного электричества[12]. Внутренняя сфера - поверхность Земли - заряжена отрицательно, внешняя сфера - ионосфера - положительно. Изолятором служит атмосфера Земли. Подключив обычный металлический проводник к отрицательному полюсу – Земле, а положительный полюс - ионосфере - с помощью специфического проводника - конвективного тока, мы получим глобальный генератор электрической энергии. Конвективные токи - это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Самые мощные из них - это ураганы и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. На практике для того чтобы удалять избыточные заряды с верхней точки проводника необходимо устройство, которое позволяет электронам проводимости покинуть проводник - излучатель электронов или эмиттер. Эмиттер может быть построен на базе высоковольтного генератора небольшой мощности, который способен создать коронный разряд вокруг излучающего электрода на верхушке проводника. Такие высоковольтные генераторы используются в промышленности в дымоулавливателях, ионизаторах воздуха, установках для электростатической окраски металлов и различных бытовых приборах. Генератор создает вокруг излучателя электронов проводимости искровой, коронный или кистевой разряд. Такой разряд является проводящим плазменным каналом, по которому электроны проводимости свободно стекают в атмосферу уже под действием электрического поля Земли. Нами(Ташполотов Ы., Садыков Э., Исаков Д.) также разрабатываются эмиттеры –излучатели электронов для получения тока на основе электрического поля Земли.

Электростатический генератор Ефименко является реализацией этого способа извлечения энергии из окружающего пространства. В его машине цилиндрический ротор вращается в потенциальном электрическом поле, создавая с помощью обычного динамо мощность около 70 Вт. Источником поля (≈ 6000 В) служит электрическое поле Земли, для чего установка имеет антенну и заземление.

2.2 Потенциальное поле Земли – источник энергии

Наличие потенциального (гравитационного, электрического, магнитного) поля Земли говорит о возможности совершить работу за счет изменения формы энергии. Заметим, что на поддержание потенциального поля не требуется источник мощности. Пример одноразовой работы потенциального поля – падение тела в гравитационном поле и при ударе об опору часть его потенциальной энергии переходит в тепло, то есть совершается работа, как преобразование формы энергии. Но пока мы рассмотрели только половину цикла, и во второй половине цикла придется совершать работу против поля, например, поднимая тело в исходную точку. Для этого необходимо получить мощность, то есть совершать работу за счет потенциального поля периодически. В общем случае возможны изменения системы, например, поле не постоянное, а переменное или пульсирующее, либо рабочее тело меняет свои параметры. В таком случае, в каждом из полуциклов поле может совершать положительную работу, ускоряя рабочее тело. Таким образом, основные технологические решения понятны - необходимо создать градиент поля в пространстве(полная или частичная экранировка части траектории движения тела в поле) или градиент поля во времени.

Примером использования градиента поля является работа Брауна в области электрогравитации. Известно, что в конденсаторе используют обычно пластины равной площади, но если одна из них значительно меньше другой, то поле между ними уже не является равномерным, то есть возникает градиент напряженности поля. В таком поле объект из диэлектрика, например, отдельная частица материала, поляризуется неравномерно, поэтому возникнет сила, двигающая ее в сторону большей напряженности поля. А напряженность уже есть градиент потенциала, то есть речь идет о градиенте градиента - о второй производной потенциала поля, что подтверждает известное правило: изменение дает новое качество.

В общем случае, если конструкция позволяет преобразовывать энергию асимметрично, то на выходе системы создается не только избыточная мощность, но и безопорная движущая сила. Очевидно, что существующие топливные теплосети, ТЭЦ и классическая электроэнергетика пока обеспечивают потребности общества, и внедрение новых энерготехнологий сталкиваются с жесткой конкуренцией. Поэтому, возможно, создание электрогравитационных движителей для космоса является наиболее вероятным направлением развития новых технологий на основе бестопливной энергосистемы и такая система, создающая нереактивную безопорную движущую силу, позволит осваивать космос - новый безграничный рынок. Примером использования электрогравитационных технологий в земных условиях также является электроводородный генератор Студенникова В.В. и Кудымова Г.И. Обнаружено существование природного физико-химического явления – гравитационного электролиза, с помощью которого открывается принципиальная возможность прямого преобразования теплоты любого происхождения в потенциальную химическую энергию путем разложения воды на водород и кислород в растворе электролита(международная заявка RU98/00190 от 07.10.1997 г.) Генератор приводится в действие механическим приводом и работает в режиме теплового насоса. Принципиальная энергетическая схема генератора во многом схожа со схемой традиционного электролизера, но в ней не применяется внешний электрический ток, а используется теплота окружающей среды или иных источников.

Геомагнитное поле в настоящее время не используется жителями Земли для получения энергии. Предыдущие цивилизации использовали геомагнитное поле в качестве источника энергии. Свидетельствами этому являются древние лабиринты, пирамиды, сооружения Стоунхенджа. В них как в структурах с неравномерным электрическим потенциалом под действием геомагнитного поля планеты с его собственной частотой 7,5 Гц создаются потоки ионизированного воздуха и эфира, в том числе и высокочастотные.


3. Виброрезонансные технологии

 

3.1 Колебания атомов, молекул и их агрегатов в веществах – это неиссякаемый источник энергии

 

Использование этого источника, непрерывно восстанавливаемый за счет энергии окружающей среды, например, в гидравлическом таране, вечной лампочке Кушелева является достижением, позволяющим заставить «работать» атом без вредной радиации. При этом, как видно, может вырабатываться не только гидравлическая и световая энергия, но также непосредственно электрическая, как это сделано Р.М.Соломянным с помощью пьезокристалла. Резонанс собственных и вынужденных колебаний различных объектов-осцилляторов, в том числе атомов и молекул, позволяет увеличить амплитуду энергообмена с окружающей средой. При этом возрастает возможность получения наибольшего количества энергии при минимальных энергозатратах на задающий генератор частоты колебаний. Так в виброрезонансном генераторе Богомолова соотношение затраченной и полученной энергий составило 1:100. Избыточная энергия на основе резонанса получена в электрогенераторах и трансформаторах Тесла, электродвигателях Мельниченко и других энергоустановках. Используются и другие виброрезонансные технологии[13].


4. Кремниевая(силикатная) энергетика

 

В настоящее время почти вся энергетика Земли является углеродной. Наряду с атомной используется и возобновляемые источники энергии – солнечная, ветровая, биомассы и др. Однако они не могут иметь большой мощности и их размещают там, где есть сами энергоисточники. Поэтому, как показывают исследования, широкая гамма высокомодульных силикатов, кремнезем может использоваться в энергетических целях, т.е. для получения электроэнергии за счет протекания высокотемпературных физико-химических реакций в гетерогенных силикатных расплавов и путем их сжигания. Теплота их сгорания составляет 40 МДж/кг, при стоимости меньшей, чем стоимость традиционных углеводородов. Кроме того, кремниевая энергетика имеет и свои особенности. Во-первых, кремний имеет высокую теплотворную способность, чем углеродные энергоносители, во-вторых, отходом силикатной энергии является кремнезем – чистый кварцевый песок (газообразных отходов нет), и в третьих сама «зола» ценнейший технический, конструкционный и строительный материал, т.е. кремниевая энергетика – безотходное производство[14].

4.1 Селективный электрохимический процесс

 

На основе открытия «процесс обеднения- особого селективного электрохимического процесса» В.Соболевым и другими разработана технология получения легких сверхпрочных материалов для авто, авиа, ракето- и машиностроения при воздействии электрического поля с помощью высокотемпературной технологии. По составу они соответствуют оксидам кремния, алюминия, титана и других технических материалов, но сильно отличаются по физико-химическим свойствам от базовых этих веществ. При напряжении 2000В в электропечи с расплавленного вещества из кремнезема происходит «срыв электронов» и, подобно обычному электролизу, на катоде происходит образование нового вещества путем обеднения расплава химическими элементами металлов. Полученное вещество многоэлементного химического соединения находится в особом состоянии, которое характеризуется нестехиометрией состава. Это вещество содержать в себе фиксированный электрический заряд довольно большой величины – положительный или отрицательный по нашему усмотрению. Новое состояние вещества формирует устойчивые структуры в сплошной среде, которые излучают переменный магнитный поток, то есть они открыли новый источник энергии. Устройство такого источника работает устойчиво и сколь угодно долго при обычных температурах, преобразуя электромагнитное поле Земли в электрический ток.

4.2 Кремний безкислородные соединения инициирует цепную реакцию.

 

По данным А.Н.Куликова при физико-химическом взаимодействии силиката с без кислородным соединением кремния (нитрид или карбид кремния) с нарастанием количества реагирующего вещества происходит расщепление массы силиката по цепной реакции путем освобождения энергии. Рабочим веществом в таком физико-химическом реакторе является высокомодульные силикаты, а кремний безкислородные соединения инициирует цепную реакцию. Для распада силиката в реакторе вначале необходимо энергия для расплавления части исходного вещества. После этого расход тепла не нужен, так как в контакте с кремнийбескислородным веществом начнется химическая реакция с выделением тепла, что приведет к расплавлению все большего количества силиката. Процесс будет продолжаться до тех пор, пока масса реагента в жидкой фазе не станет равной критической. С этого момента начинается цепная реакция, сопровождаемая лавинообразным выделением энергии. Управление интенсивности цепной реакции осуществляется путем введения стержня из кремнийбескислородного соединения(например карбид кремния) в расплав силиката до необходимой глубины. При вдвигании стержней в реактор реакция увеличивается, растет и тепловыделение, а при выдвигании – уменьшается. То есть эти стержены будут поддерживать баланс выделяющегося и потребляемого тепла, что обеспечит необходимую мощность энергоустановки и предотвращения возможного взрыва. Над разработкой силикатной технологией наша научная группа(Ташполотов Ы., Садыков Э., Айдаралиев Ж.К., Матисаков Ж. и др.) занимается с 1998 года.

Таким образом, будущее земной энергетики в главном, будет основано на водородной, термоядерной, кремниевой и геомагнитной источников энергии. В связи с этим необходимо основательно с фундаментальных позиций начать научно-исследовательские и опытно-конструкторские работы в области технологии получения водорода из воды, разработки и строительства гравитационно-термодинамических ядерных станций, разложения кремнезема и сжигания кремния в энергетических целях и использования геомагнитного поля в качестве источника новой энергии.


Литература

 

1. Перельман Я.И. Занимательная алгебра. М.: Наука, 1976. – 200с.

2. Андреев Е.И. Основы естественной энергетики. СПб: Нев. Жемчужина, 2004. -582с.

3. Шейндлин А.Е. Проблемы новой энергетики. М.: Наука, 2006. – 405с.

4. Канарев Ф.М. Введение в водородную энергетику. Краснодар, 1999. – 22с.

5. Месяц Г.А., Прохоров М.Д. Водородная энергетика и топливные элементы // Вестник РАН, 2004, т.74, №7, с. 579 – 597.

6. Дашков И.И. Водород – топлива будущего. // Механизация и электрификация сельского хозяйства, 2001, №6, с.7-9.

7. Херольд Л. Фокс. Холодный ядерный синтез: сущность, проблемы, влияние на мир. Взгляд из США. М., 1993. - 180с.

8. Цивинский С.В. Кавитационная термоядерная электростанция // Естественные и технические науки, 2006, №2, с.178-183.

9. Канарев Ф.М. Вода–новый источник энергии. Краснодар, 1999. – 152с.

10.  Косинов Н.В. Происхождение протона.// Физический вакуум и природа, 2000, №3.

11. Потапов Ю.С., Фоминский Л.П., Потапов С.Ю. Энергия вращения.М., 2002.

12. Курилов Ю.М. Альтернативный источник энергии. Электрическое поле земли – источник энергии.// www.ntpo.com

13. Хайтун С.Д.Энергетика, построенная на круговороте тепла и вечных двигателях 2-го рода. Книга "Тепловая смерть" на Земле и сценарий ее предотвращения. Часть 1. 2009. -192 с.

14. Голицын М.В., Голицын А.М. Альтернативные энергоносители. М.: Наука, 2004. -159с



2019-07-04 198 Обсуждений (0)
Бестопливные энергосистемы-источник альтернативной энергии 0.00 из 5.00 0 оценок









Обсуждение в статье: Бестопливные энергосистемы-источник альтернативной энергии

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (198)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)