Мегаобучалка Главная | О нас | Обратная связь


УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ



2019-07-04 289 Обсуждений (0)
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 0.00 из 5.00 0 оценок




 

Диод

 

В основе принципа выпрямления напряжения лежит свойство полупроводникового диода проводить электрический ток только в одном направлении. Схематично полупроводниковый диод может быть представлен в виде двух сваренных между собой пластинок p- и n-типа. В такой пластинке можно выделить три зоны. Две из них расположены по краям, они относительно больших размеров и обладают одна проводимостью p-типа, а вторая - проводимостью n-типа. Третья зона называется p - n переходом и представляет собой очень узкую область, разделяющую области с p- и n-типами проводимости (она образуется на стадии изготовления диода в результате диффузии пластинок полупроводника с различными типами проводимости). Внешние поверхности областей с p- и n-типами проводимости покрывают металлическими пластинками, к которым припаивают электроды. Электрод, контактирующий с областью p-типа, называется анодом, а контактирующий с областью n-типа - катодом.

Диод может находиться в одном из двух состояний - открытом или закрытом. Если на электроды подать постоянное напряжение, соединив анод с положительным полюсом источника тока, а катод - с отрицательным, то под действием возникшего электрического поля электроны начнут перемещаться в сторону от катода к аноду (навстречу полю), а дырки - от анода к катоду (по ходу поля). В результате сопротивление p - n перехода резко уменьшается и через него начинает течь электрический ток, величина которого прямо пропорциональна приложенному напряжению. В этом случае говорят, что к диоду приложено прямое напряжение и через диод течёт прямой ток, а сам диод находится в открытом состоянии. Если изменить полярность прикладываемого напряжения, то электроны устремятся к катоду (на него теперь подан «+»), а дырки - к аноду (на нём «-«). В результате область p - n перехода расширяется, образуя обеднённую зарядами зону, что ведёт к резкому возрастанию электрического сопротивления p - n перехода и ток через диод резко уменьшается в сотни раз. Диод переходит в закрытое состояние. В этом случае говорят, что к диоду приложено обратное напряжение и через диод течёт обратный ток.

Наличие обратного тока является недостатком полупроводникового диода. Существование этого тока объясняется тем, что технически невозможно изготовить полупроводники p - и n -типов, обладающих только дырочной или только электронной проводимостью. Наличие некоторого количества электронов в полупроводнике p -типа и дырок в полупроводнике n -типа и обеспечивает незначительный ток в обратном направлении (полным отсутствием обратного тока обладают только вакуумные диоды, работающие совершенно по иному принципу и в данной работе не рассматривающиеся).

Способность диода проводить электрический ток характеризуется величиной электрического сопротивления p - n перехода, которое называется внутренним сопротивлением диода. Внутренне сопротивление закрытого диода в сотни раз больше, чем открытого, в результате чего и обратный ток диода значительно меньше прямого тока. Зависимость величины протекающего через диод тока от величины и направления приложенного к диоду напряжения называется вольтамперной характеристикой (ВАХ) диода (рис. 2). Поскольку величина обратного тока диода очень мала, то соответствующая ему ветвь ВАХ очень плотно «прижата» к оси напряжений.

Следует отметить, что стремление обеих ветвей ВАХ в бесконечность не означает, что к диоду можно прикладывать сколь угодно высокое прямое напряжение в надежде пропустить через диод очень большой ток. С ростом тока p - n переход сильно нагревается и плавится - диод перегорает. При этом цепь размыкается и диод перестаёт проводить ток даже в одном направлении. Нельзя подвергать диод и воздействию чрезмерно высокого обратного напряжения. В этом случае p - n переход, не выдерживая слишком сильного электрического поля, будет пробит. При этом свойство односторонней проводимости диодом будет утеряно и он станет проводить ток одинаково хорошо в обоих направлениях. Поэтому любой диод характеризуется прежде всего двумя основными параметрами - максимально допустимым прямым током  и максимально допустимым обратным напряжением . Диоды различных марок обладают различными значениями  и . Обе эти характеристики диода, наряду со множеством других его характеристик, можно найти в соответствующих справочниках по полупроводниковым приборам. Зависимость прямого тока от напряжения, вообще говоря, не линейна. Однако эта нелинейность заметно проявляется только на начальном участке кривой, где величина прямого тока очень мала и с ростом напряжения изменяется очень медленно. На этом участке ВАХ диод можно считать закрытым. Но при достижении между электродами прямого напряжения определённой величины диод открывается и дальнейшая зависимость тока от напряжения становится практически линейной. Разные диоды обладают различной величиной открывающего напряжения У диодов, изготовленных на основе германия, оно гораздо меньше, чем у кремниевых диодов (рис. 3). Эта способность разных диодов открываться при различных, но вполне определённых для каждого типа диода, напряжениях позволяет использовать полупроводниковые диоды при решении многих технических задач. Так, например, использование диода в качестве датчика температуры или для контроля величины переменного тока желательно использовать германиевый диод. В тех же случаях, когда необходимо избавиться от слабых электрических сигналов, применять следует кремниевый диод. В большинстве же других случаев германиевый и кремниевый диоды вполне взаимозаменяемы.

 

Стабилитрон

 

Стабилитрон представляет собой разновидность диода и способен выполнять его функции. Однако обратная ветвь ВАХ стабилитрона значительно отличается от аналогичного участка этой характеристики диода. По мере роста обратного напряжения ток в обратном направлении через стабилитрон сначала изменяется очень медленно (как у диода), а при достижении обратным напряжением определённой величины, резко возрастает. Ситуация очень похожа на пробой обычного диода, но из строя стабилитрон при этом не выходит (если обратный ток не превышает допустимой величины). Напряжение, начиная с которого стабилитрон входит в режим пробоя, называется напряжением стабилизации , а соответствующий ему ток минимальным током стабилизации . Предельно допустимый для данного стабилитрона ток стабилизации называется максимальным током стабилизации . Из рисунке 4 видно, что незначительное изменение напряжения  ведёт к довольно существенному изменению обратного тока  через стабилитрон. Отношение этих величин называется дифференциальным сопротивлением стабилитрона и является очень важной его характеристикой. Величина дифференциального сопротивления является функцией обратного тока стабилитрона. Чем больше этот ток, тем меньше дифференциальное сопротивление, а значит, согласно закону Ома, тем меньше изменение напряжения на электродах стабилитрона.

Подробнее работу стабилитрона рассмотрим на примере схемы, изображённой на рис. 5. Эта схема представляет собой простейший параметрический стабилизатор напряжения. Состоит он из стабилитрона и балластного сопротивления, выполняющего роль ограничителя обратного тока через стабилитрон (во избежании перегрева). На вход стабилизатора подаётся постоянное напряжение  от внешнего источника питания. Нагрузка стабилизатора подключается непосредственно к электродам стабилитрона. В задачу этого устройства входит поддержание такого режима питания нагрузки, чтобы даже при значительном изменении входного напряжения , изменение напряжения на нагрузке не превышало очень малой величины .

Если входное напряжение  по какой-либо причине возрастёт на величину , то и обратный через стабилитрон ток возрастёт на некоторую величину . Это вызовет уменьшение дифференциального сопротивления стабилитрона на величину . Уменьшение же сопротивления приведёт к уменьшению напряжения на электродах стабилитрона, а, значит, и на нагрузке. В результате питаемое нагрузку напряжение останется равным .

 

Транзистор

 

 

Транзистор представляет собой полупроводниковый прибор, способный работать в ключевом или усилительном режимах. В отличии от диода, транзистор имеет два p-n-перехода, между которыми располагается полупроводник, например, p-типа, а по обе стороны от p-n-переходов – кристаллы полупроводника n-типа. Такие транзисторы называются транзисторами n-p-n типа (рис. 6. а.). Если между p-n-переходами располагается полупроводник n-типа, а по обе стороны от p-n- переходов – полупроводники p-типа, то такой транзистор называют транзистором p-n-p типа (рис. 6. б.). Центральная область транзистора называется базой, а крайние области – эмиттером и коллектором. В функции эмиттера входит вводить (эмитировать) в базу дырки (в транзисторе p-n-p типа) или электроны (в транзисторе n-p-n типа), а функции коллектора – собирать эти заряды. Графическое обозначение транзисторов разной структуры показано на рисунке 7.

Легко заметить, что такая комбинация полупроводников напоминает два диода с общим анодом (n-p-n) или катодом (p-n-p). Такая аналогия вполне справедлива и на практике позволяет легко тестировать транзистор на предмет его работоспособности при помощи обычного омметра.

Рассмотрим в общих чертах работу транзистора p-n-p типа. Пусть сначала цепь эмиттер-база разомкнута, а между коллектором и базой приложено обратное напряжение  порядка десяти вольт. В этом случае p-n-переход окажется запертым, и в коллекторной цепи будет протекать обратный ток  незначительной величины, являющийся важной характеристикой транзистора.

Теперь между эмиттером и базой приложим прямое напряжение  порядка единиц вольт. Поскольку эмиттер содержит значительно больше атомов примеси, чем база, то концентрация дырок в эмиттере больше, чем в базе. Так как напряжение  приложено к p-n-переходу в прямом направлении, то в цепи эмиттер-база протекает ток значительной величины даже при небольшом значении приложенного напряжения. В базе некоторая часть дырок рекомбинирует со свободными электронами, убыль которых пополняется новыми электронами, поступающими из внешней цепи, образуя в ней ток базы . В базе вследствие диффузии большая часть дырок доходит до коллекторного перехода и под действием электрического поля источника  проникает через p-n-переход в коллектор. В результате в цепи база-коллектор возникает ток  того же порядка, что и на участке эмиттер-база. Отношение приращения коллекторного тока  к соответствующей величине приращения эмиттерного тока  при постоянном напряжении на коллекторе называется коэффициентом передачи тока:

 (при )

и является одной из важнейших характеристик любого транзистора.

Из сказанного следует, что коэффициент передачи тока всегда меньше единицы и принимает значение порядка 0,9-0,99.

 

Принцип действия транзистора n-p-n- типа полностью аналогичен рассмотренному. В транзисторе n-p-n типа под действием напряжения между эмиттером и базой эмитируются электроны из области n в область p. Полярность источников  и  в этом случае должна быть обратной по сравнению с той, которая имела место при рассмотрении принципа действия транзистора p-n-p типа.

Как было сказано выше, транзистор может быть использован в качестве усилителя напряжения, тока или мощности. При этом усиливаемый сигнал подаётся на два электрода транзистора (вход), а усиленный сигнал снимается тоже с двух электродов (выход). Таким образом, один электрод является общим для входной и выходной цепей. В зависимости от того, какой из электродов является общим, различают три схемы включения транзистора: с общим эмиттером (ОЭ), с общим коллектором (ОК) и с общей базой (ОБ).

При включении транзистора по схеме ОЭ (рис. 8. а.) напряжение питания  прикладывается между эмиттером и коллектором, в цепь которого включается сопротивление , служащее нагрузкой усилителя. Усиливаемый сигнал прикладывается между заземлённым эмиттеров и базой через конденсатор связи , препятствующий проникновению на базу транзистора постоянной составляющей усиливаемого сигнала. Усиленный сигнал снимается с эмиттера и коллектора транзистора. Схема ОЭ позволяет достигать 10-200-кратного усиления сигнала по напряжению и 20-100-кратного усиления по току (зависит от усилительных свойств транзистора).

Существенным недостатком такого включения транзистора является его малое входное сопротивление (всего 500-1000 Ом), что значительно затрудняет согласование каскадов, собранных по схеме ОЭ. Объясняется это тем, что эмиттерный переход в этом случае оказывается включённым в прямом направлении, в результате чего сопротивление перехода, зависящее от величины прикладываемого напряжения, очень мало. Выходное же сопротивление схемы ОЭ велико (2-20 кОм) и зависит не только от усилительных свойств транзистора, но и от сопротивления нагрузки .

При включении транзистора по схеме ОК (рис. 8. б.) усиливаемый сигнал прикладывается между базой и эмиттером через резистор , выполняющий функции нагрузки транзистора. Именно с него и снимается усиленный сигнал. Такая схема включения транзистора даёт усиление по напряжению меньше единицы, а по току коэффициент усиления может достигать той же величины, что и при включении по схеме ОЭ. Поскольку транзистор в этом случае не даёт усиления по напряжению, а только как бы повторяет его на выходе (эмиттере), транзистор, включаемый по схеме ОК, также называют эмиттерным повторителем. Важным достоинством такой схемы включения транзистора является большая величина его входного сопротивления (10-500 кОм), что хорошо согласуется с высоким выходным сопротивлением схемы ОЭ.


Чтобы разобраться в причинах, по которым транзистор, включаемый по схеме ОК, не усиливает напряжения, вновь обратимся к рисунку 8. б. Резистор , показанный пунктиром (в состав схемы ОК он не входит) представляет собой эквивалент внутреннего сопротивления источника усиливаемого сигнала (например, микрофона). Через это сопротивление усиленный сигнал с нагрузки  через сопротивление  подаётся на базу в противофазе. В результате между эмиттерной и базовой цепями возникает сильная отрицательная обратная связь, сводящая усиление каскада по напряжению на нет.

При включении транзистора по схеме ОБ (рис. 8. в.) база через конденсатор  соединена с эмиттерной цепью, то есть с общим, заземлённым проводом. Усиливаемы сигнал через конденсатор связи  подаётся одновременно и на базу и на эмиттер транзистора, а усиленный сигнал снимается с коллектора и заземлённой базы, которая, таким образом, служит общим электродом входной и выходной цепей каскада. Схема ОК даёт усиление по току меньше единицы, а по напряжению примерно такое же, как и при включении транзистора по схеме ОЭ (10-200 раз). Поскольку входное сопротивление схемы ОК очень невелико (30-100 Ом), её обычно используют в генераторах электрических колебаний, в аппаратуре радиоуправления моделями и пр..

Оптимальный режим работы транзистора, включённого в ту или иную цепь, во многом определяется его, так называемыми, входными и выходными статическими характеристиками. Входной характеристикой транзистора называется функциональная зависимость тока базы  от напряжения между базой и эмиттером  при фиксированном напряжении между коллектором и эмиттером :

.

Графически эта зависимость для транзистора p-n-p типа, включённого по схеме ОЭ, показана на рисунке 9. При малых значениях между базой и эмиттером  ток базы растёт медленно, но по мере возрастания напряжения  крутизна кривой увеличивается и характеристика выходит на линейный участок. Как видно из рисунка, угол наклона линейных участков характеристики зависит от величины выходного напряжения .

 

Выходная характеристика транзистора представляет собой функциональную зависимость тока коллектора  от напряжения между коллектором и эмиттером  при фиксированной величине тока базы :

.

Графически выходные характеристики для транзистора p-n-p типа, включённого по схеме ОЭ, представлены на рисунке 9.




2019-07-04 289 Обсуждений (0)
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 0.00 из 5.00 0 оценок









Обсуждение в статье: УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (289)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)