Мегаобучалка Главная | О нас | Обратная связь


Краткий анализ основ геометрий 13 страница



2019-08-13 190 Обсуждений (0)
Краткий анализ основ геометрий 13 страница 0.00 из 5.00 0 оценок




В материальном мире гомотетия есть постоянное преобразование (самопульсация) всех элементов одной системы. Самопульсация обусловливает орбитальную гомотетию тела и возвратно-поступательное движение по оси, соединяющей его центр с центром плотностного тела. Траекторию движения определяет как самопульсация, так и вынужденная пульсация (реакция деформации на волны пульсации других тел, планет, Солнца, центра Галактики и т.д.). А поскольку небесные тела движутся по орбитам геометрической формы, то данное возвратно - поступательное движение сопровождается образованием волнообразной траектории их полета [2].

Динамическая геометрия описывает реальные физические процессы и следует предполагать, что явление силовой «гомотетии» может наблюдаться, например, и в деформации планет Солнечной системе. Поскольку планеты движутся не строго по круговым траекториям, а по эллиптическим орбитам, то в афелии и перигелии этих орбит планеты должны иметь различную величину своего радиуса. Так расчетный радиус Земли в афелии должен превышать радиус в перигелии более чем на 200 км. Однако ни люди не ощущают, ни приборы не фиксируют столь значительные колебания размеров земного шара потому, что происходит тождественное сжатие или расширение всех молекул и атомов, образующих планету Земля. И эта тождественная деформация молекул изменяет показания всех приборов пропорционально общей деформации, нейтрализуя возможность их различения (именно так, как это происходит у Пуанкаре при описании температурных изменений). А еще потому, что современные ученые даже не предполагают и потому не верят в возможность столь значительной деформации планет. А раз не предполагают, то и не наблюдают, более того, когда наблюдают, не верят глазам своим, игнорируя даже результаты астрономических наблюдений. Похоже, что именно это обстоятельство отражено в последовательном определении размеров планеты Меркурий.

Меркурий наиболее близкая к Солнцу планета Солнечной системы имеет очень большой эксцентриситет своей орбиты. Поэтому разница в размерах планеты, находящейся в афелии и в перигелии, будет превышать тысячу км, около четверти диаметра. Естественно, что не засечь такую разницу ну просто невозможно, разве что если уж очень постараться. И тут на «помощь» астрономам приходит природа. Расположение Меркурия вблизи Солнца очень неудобно для наблюдения, да и максимальное время наблюдения составляет менее двух часов. К тому же в лучах либо восходящего, либо заходящего Солнца. Немало и других неблагоприятных факторов. Вот и получается, что лучше всего наблюдать планету в период ее нахождения в афелии, то есть в наибольшем удалении от Солнца, тогда, когда она имеет «неизменный» размер. И, похоже, астрономы только там ее и наблюдают. И все же эти наблюдения дают существенный разброс размеров радиуса планеты. Вот как это отображено в астрономическом ежегоднике:

1960 г.             2570 км,

1962 г.             2385 км,

1973 г.             2439 км,

1976 г.             2420 км,

2001 г.             2439 км.

Конечно разброс не очень значительный (все же постоянная точка наблюдения - афелий) но достаточный, чтобы задуматься, почему же это происходит, тем более, что в справочниках точность наблюдения дается ± 5 км, но не ± 50 же км. И хотя бы один раз попробовать определить, для уточнения, радиус Меркурия в перигелии. И прежде чем вернуться к геометрии, добавим, что в квантовой механике именно процесс гомотетии, сопровождающийся возрастанием энергии деформируемой элементарной частицы, обусловливает ее прохождение через потенциальный барьер.

Отметим, что для динамической геометрии, похоже, становится неприменимым евклидово понятие "прямая линия", поскольку последняя может не проходить через две существующие точки. Вероятно, более подходит следующее определение прямой: Прямая линия - след точки движущейся к другой точке по кратчайшему пути или перпендикулярно эквипотенциальной поверхности напряженности. Евклидово определение понятия "точка" можно временно сохранить.

Рассмотрим, к каким последствиям приводит аксиома о параллельных в динамической постановке (рис. 31). Предположим, что из точки А к точке О движется с отрицательным ускорением тело-точка и за прошедшее неопределенное время она прошла расстояние АА, след-траектория которого есть прямая линия. Будем называть ее прямой. Одновременно из точки А ¢ к тому же центру О и по тому же закону движется другое тело-точка. И эта точка прошла расстояние А ¢ А ¢ . Ее след-траектория тоже прямая линия или просто - прямая, как и след всех последующих точек. Прямые АА и А ¢ А ¢ , оставленные движущимися точками, по геометрии Евклида не являются параллельными. Но в динамической геометрии они параллельны, поскольку никогда не в состоянии достичь центра О и, следовательно, пересечься в одной точке. К тому же, в отличие от «прямых» Лобачевского и Римана, они действительно прямые.

Определим, какие зависимости возникают между движением этих прямых и элементами фигур, образуемых ими. Продолжим построение (рис. 33). Проведем дополнительные прямые А'А', А"А" , ... АnАn так, чтобы по длине они оставались равными между собой, а расстояние между ними определялось отрезком, выходящим из некоторой точки к прямой АА до точки k¢, лежащей на прямой А'А' под углом Akk' к прямой А'А' и равным ему углом A' kk¢ прямой АА.

Следующую прямую проводим по тем же правилам из точки k¢ прямой А'А' к точке k" прямой А"А". И так до тех пор, пока отрезок, выходящий из точки kn прямой АnАn, не замкнет построение ломаной линии прямой АА. Поскольку расстояние между прямыми одинаково, а углы в пересечении каждого отрезка с прямой равны, то замыкающий отрезок попадает в ту же точку k прямой АА, из которой вышел отрезок kkn. Замкнутая ломаная kk'k" ... kn образует равносторонний многоугольник.

В результате получаем на плоскости «частокол» прямых, имеющих своим стремлением недостижимый в бесконечности, а потому фиктивный, центр О. Все прямые в своем движении к недостижимому центру параллельны и по определению, и по структуре напряженности на поверхности плоскости. А основная особенность образовавшегося правильного многоугольника - дихотомия конечного и бесконечного в том, что конечный периметр замыкает в себя площадь бесконечной величины. Если теперь через центры отрезков, образующих стороны многоугольника kk', k'k", k"k"', ..., knk, провести новые прямые и соединить их отрезками по правилам, изложенным выше, то получим многоугольник с количеством сторон, превышающем количество первого в два раза. При продолжении этой операции бесчисленное число раз длина отрезков kk ¢ , k'k",..., knk будет стремиться к минимуму, а углы Аkk¢, A'k¢k, A'k¢k¢¢,... устремятся к p /2, и в пределе многоугольник kk¢k¢¢ ... kn превратится в окружность на плоскости. Плоскость окружности одновременно будет обладать свойствами евклидовой статической геометрии и содержать в своих границах площадь конечной величины, и свойствами неевклидовой геометрии и содержать в тех же границах площадь величины бесконечной. Две несовместимые бытийно площади как бы налагаются друг на друга. (И здесь дихотомия конечного и бесконечного.)

 
В полном соответствии с геометрией Евклида длина окружности S обеих геометрий будет равна 2p радиан, а радиус одной будет конечен, другой же, напротив, будет стремиться к бесконечности, никогда не достигая центра О. У данной окружности центр отсутствует. Прямая может исходить из какой-то точки окружности динамической геометрии или входить в нее, но никогда не может пройти бесконечность, то есть дойти до центра. В то же время, по геометрии Евклида, центр у данной окружности имеется, длина радиуса конечна и определяется уравнением R = S /2p .

Получается, что одни и те же геометрические элементы можно одновременно мерить и жесткими стержнями (геометрия Евклида) и динамическими изменяемыми эталонами. А это означает, что между геометрией статической и динамической имеется определенная взаимосвязь. Попробуем ее отыскать.

Отложим от точки k вправо и влево (см. рис. 33) по отрезку kk1и kk2 одинаковой длины в евклидовой мерности и, используя предыдущее правило построения, проведем через них еще две окружности k1¢k1¢¢k1¢¢¢... k1n и k2k2¢k2¢¢...k2n. Естественно, что окружности k1 и k2по отношению к окружности k будут описанной и вписанной. И это единственное, что общее в структуре, как для евклидовой, так и для неевклидовой геометрии.

Отличие начинается с того, что наружу от окружности k обе геометрии допускают проведение бессчетного числа окружностей на одинаковом расстоянии друг от друга. А внутри окружности k по геометрии Евклида, число таких окружностей ограничено, по динамической же геометрии - количество их неограниченно. Каждая окружность динамической геометрии - эквипотенциальная линия напряженности относительно точки О. И длина ее (или площадь) равна бесконечности одного ранга, т.е.они равны между собой. Это есть следствие гомотетии и аксиомы о динамических параллельных. Она может быть сформулировано следующим образом:

Дуги-хорды kk¢ , k1k1¢, пересекающие прямые АА и А ¢ А ¢ под одним углом и на некотором расстоянии друг от друга, имеют одинаковую длину.

Это следствие - теорема требующая доказательства. В настоящей работе оно предлагается как аксиома. И на ее основе получается, что:

- В геометрии Евклида длина всех окружностей различна, в неевклидовой же одинакова. Линия окружности является прямой.

- В геометрии Евклида длина окружности непрерывна, а в неевклидовой - дискретна. Она состоит из бесчисленного множества одинаковых отрезков бесконечной длины.

- В статической геометрии радиус окружности – конечен. В динамической бесконечен.

- В статической геометрии взаимодействие между радиусом и окружностью отсутствует, в динамической наличествует.

- В статической геометрии радиусы и окружности не связаны со временем, в динамической такая связь имеется и т.д.

Таким образом, отсутствие одинаковых качеств у окружностей двух геометрий лишает нас возможности определения взаимосвязи между ними по качественным признакам и вынуждает использовать свойства несоизмеримых чисел (что вполне понятно, поскольку конечное и бесконечное несоизмеримы по определению). Возьмем, например, два евклидовых круга одинакового радиуса r и площадью S. Сложим площади вместе так, чтобы образовался новый круг в два раза большей площадью S ¢ и определим, насколько радиус R нового круга больше радиуса r маленького круга. Площадь большого круга S¢= p R2 , малого S = p r2:

p R2 = 2r2p        R = rÖ2 = 1,41421... r .

Число Ö2, по Дедекинду - несоизмеримое иррациональное число. Символ особого способа распределения соизмеримых чисел. Однако, в динамической геометрии это символ связности, соизмеримости, а в данном случае - качественный коэффициент, обусловливающий изменение качества пространства при движении в нем двух линий к отдаленному центру. При коэффициенте связности, равном Ö2, две линии, движущиеся на плоскости к одному центру, всегда параллельны, или, что то же самое, никогда не пересекаются на бесконечности. При устремлении Ö2 ® 1 соизмеримость бесконечности меняется, и при достижении 1 динамическая геометрия переходит в статическую геометрию Евклида на плоскости.

Определим, чему равно несоизмеримое число, описывающее пространство. Используем вышеприведенный метод построения окружности и при образовании сферы. Для этого проведем множество прямых А, параллельных АА не в плоскости, а в объеме, и получим «ежик» прямых, образующих объем и устремленных в одну точку на бесконечности. Пересечем их прямыми, исходящими из точки k1, по ранее описанному методу. В результате построения получаем сферический многогранник, сходящийся при бесчисленном увеличении граней в правильную сферу, имеющую конечную площадь поверхности, но бесконечную длину радиуса.

Имеется и более простой способ построения сферы путем вращения образовавшегося круга вокруг прямой, например, АА которая поэтому как бы становится осью вращения, а при повороте на минимальные градусы в образовавшиеся элементы сферы «втыкаются» прямые, направленные к центру. Но при этом создается иллюзия, что образовавшаяся сфера имеет выделенную ось вращения, и ось эта - прямая АА, «проходящая» через центр сферы. В данной же сфере ни одна прямая, входящая в сферу и идущая к центру, до него не доходит и тем более его не проходит, а потому не может быть признана осью.

Любым из этих способов можно построить бесчисленное количество сфер как внутренних, так и внешних по отношению к базисной сфере k, объем каждой, из которых будет конечен по евклидовой геометрии и бесконечен по динамической. И если объем всех евклидовых сфер геометрически различен, то объем неевклидовых сфер физически равен друг другу, т.е. обладает тем же соотношением качеств, что и окружности.

Теперь, исходя из метричности евклидовых объемов сфер, определим величину коэффициента объемной связности (объемное число Дедекинда). Мысленно вычленим внутри одной сферы другую таким образом, чтобы объем вычлененной сферы V и объем сферы V1 между поверхностями двух сфер были равны: V = V1, тогда суммарный объем V2 равен:

V2 = 4/3p R3 = V1 + V = 2V = 8/3p r3 .

 Определим, насколько радиус внешней сферы R превышает радиус внутренней r, R3 = 2r3.

 Отсюда: R = 3Ö2 r = 1,259921 ... r. k = 1,259921… .

Таким образом, коэффициент связности объема k (несоизмеримое число Дедекинда) равно: k = 3Ö2 = 1,259921... . Это число,как и коэффициент связности окружности, является иррациональным и обусловливает бесконечное движение динамических параллельных к центру сферы.

Хотя коэффициент связности и является безразмерностной величиной, он качественно индивидуален для каждого свойства. Говоря словами Дедекинда, каждый коэффициент принадлежит своему и только своему рангу параметров, а потому для каждого из них необходима собственная числовая индексация.

 

Выводы:

Методы математического преобразования не применимы для описания движения геометрических фигур на бесконечность.

Аксиомы о параллельных неевклидовых геометрий, включающие возможность бесконечного движения прямых через точки, отображают не математическое преобразование, а механическое движение фигур.

Траектории-следы точек, движущихся с минусовым ускорением к единому центру и не достигающие его за бесконечный промежуток времени, не пересекаются и, следовательно, параллельны.

Наличие движущихся в бесконечность и неподвижных фигур в неевклидовых геометриях свидетельствует о том, что они описывают механическое движение и потому являются полудинамическими геометриями. В динамической геометрии все фигуры подвижны.

Статические и полудинамические геометрии являются производными элементами динамической геометрии.

Но математическому описанию движения всегда предшествует понимание процесса взаимодействия природных тел. Попробуем рассмотреть особенности тех движений, которые проявляются в неевклидовых геометриях при отображениях реальных природных движений.

 

2.8. Падение тел в

плотностном пространстве

 

В настоящем разделе речь пойдет только об одной форме движения тел - их «свободном» падении в гравитационном пространстве и времени Солнечной системы, поскольку именно аналогичное падение напоминает след-траектория, оставляемая свободно движущейся точкой относительно другой в полудинамической геометрии. Поскольку всякое движение, по нашему представлению, возможно только в пространстве и во времени, а перемещение точки в геометрическом (реальном?) пространстве не сопровождается явным проявлением времени и, следовательно, не может считаться отображением движения, надо выяснить: Описывает ли траектория движения точки в динамической геометрии реальное движение тел? Проявляет ли себя время в динамической геометрии? И в какой форме? Изменяется ли скорость течения времени в пространстве или остается абсолютной, как это постулируется в классической механике?

Теперь, имея определение основной аксиомы динамической геометрии, рассмотрим, о чем свидетельствует невозможность как статической формулировки аксиомы о параллельных в геометриях Лобачевского и Римана, так и искривление «прямых», проходящих через точку. Проанализируем качественно, на примере (рис. 34), те факторы, которые обусловливают появление «прямых» - элементов геометрий Евклида, Лобачевского, Римана при движении двух тел к общему плотностному центру О.

Предположим, что плотностной центр О является телом (например, Солнцем), на которое под воздействием притяжения, падают в динамической параллельности своих траекторий два тела-точки А и В оставляя прямолинейные следы-линии. В своем движении к центру они перпендикулярны плотностным эквипотенциальным поверхностям напряженности гравитационного поля. В некоторой точке А движение тела А искусственным образом изменяют так, чтобы на участке АД оно двигалось в статической параллельности траектории движения тела В. Естественно, что на участке АД это тело движется под углом к плотностным эквипотенциальным поверхностям и для такого движения должно получать дополнительную энергию и потому двигаться с большим ускорением чем при свободном падении. В точке Д энергия, вызывающая ускоренное движение тела А статически параллельно телу В, прекратила свое воздействие и тело А, представленное самому себе, продолжило падение на центр О. Имея большую энергию движения тело А продолжает падение по одной из трех возможных траекторий (рис. 34):

по траектории а - по параболе, приближаясь к новой форме динамической параллельности с траекторией тела В, с возможным бесконечным падением на центр О;

по траектории b - по эллипсу, огибая плотностной центр О и превращаясь в его спутник;

по траектории с - по гиперболе, «оттолкнувшись» от центра О и удаляясь от него на бесконечное расстояние.

Ориентируясь нарис. 34, можно полагать, что геометрия Лобачевского основывается на разработке элементов траектории с, а геометрия Римана на базе траекторий а и b. Все три фигуры хорошо изучены в статической геометрии. К тому же поэллиптической траектории движутся многие небесные тела и в частности - планеты.

 

 

Рис. 34.                                                                                     с                                                                                                                                                                                                                          Д                                       А                                                                           а       в                                                                   О                                  В                                                               

Появление эллиптической траектории движения точки-тела с одной стороны свидетельствует о том, что статические геометрические фигуры есть остановленные в движении очертания фигур-траекторий динамической геометрии, а с другой вызывает вопрос: А не является ли траектория планет следствием движения небесных тел по законам динамической геометрии? Не является ли динамическая геометрия аналогом физической геометрии?

Выше уже отмечалось что, «свободное» движение точки в полудинамической геометрии несколько напоминает движение комет в околосолнечном пространстве, которое само по себе является падением, а след кометы (траектория) в пространстве также может описывать одну из трех конических сечений: гиперболу, параболу, эллипс. К тому же и планеты, и их спутники, и другие небесные тела имеют эллиптическую траекторию. Такую траекторию, которая, по идее Ньютона, образуется телом, совершающим в гравитационном поле одновременно два движения: горизонтальное - стремление по инерции «проскочить» мимо удерживающего его тела (для планет - Солнца) и вертикальное, падение на то же самое Солнце. Сложение инерционного и гравитационного воздействий «усмиряет» небесные тела и обусловливает им эллиптическую траекторию орбиты.

Законы эллиптического движения небесных тел были эмпирически открыты почти 400 лет назад Кеплером и до сих пор сохранили свое значение в астрономии. Нашему случаю, отображению движения тела-точки по эллиптической орбите, соответствует третий закон Кеплера, связывающий периоды обращения любых двух планет с большими полуосями - средними расстояниями их от Солнца. Закон утверждает:

«Квадраты периодов обращения планет вокруг Солнца пропорциональны кубам их средних расстояний до него».

а313 = Т212.                                            (2.6)

Очень существенно то обстоятельство, что в самом законе (2.6) ничего не упоминается о планетах. Они «принудительно привнесены» в закон как параметры орбит. В законе же Т и Т1 - годовой период обращения некоторых тел по орбитам, где а и а1 - большие полуоси орбит. Закон записан крайне неудачно, так как отображает безразмерностное отношение параметров различных систем и потому скрывает физическую сущность закона Кеплера. К тому же параметры эти непосредственно не связаны друг с другом. Годовое время вращения не имеет прямого отношения к среднему радиусу орбиты. Но то, что даже в такой формализации отмечается связь в параметрах движении всех планет, свидетельствует о глубинной взаимосвязи времени и пространства во всей Солнечной системе.

Поскольку большие и малые полупериоды орбит планет различаются между собой незначительно, то они, без значительных ошибок для расчета, могут считаться радиусами орбит соответственно равными R и R1. Тогда уравнение (2.6) приведенное к системе одной планеты приобретет вид:

R32 = R1312 - const.                               (2.7)

То есть отношение куба радиуса орбиты одной планеты к квадрату ее периода вращения равно отношению куба радиуса орбиты другой планеты к квадрату периода ее вращения.

Уравнение (2.7), в котором R соответствует (2.4), есть системный физический инвариант, связывающий два свойства одной области пространства Солнечной системы единой взаимозависимостью. Инвариантность такого рода уравнений заключается в том, что изменение количественной величины любого из параметров, входящего в инвариант сопровождается пропорциональным изменением всех остальных параметров, но количественная величина инварианта - const при этом остается неизменной.

Инвариантные системы отображают всеобщие, качественные и количественные взаимосвязи всех свойств физических тел и образуемых ими пространств. Они составляют математическую основу физической геометрии.

Это и определяет физическую сущность инварианта (2.7). Инвариант (2.7), приобретая физический смысл, и оказываясь одинаковым для всех планетарных орбит - const, тем не менее, образует ту же что и (2.6) пропорцию годового времени с радиусом орбиты, но другой численной величины. Найдем его по параметрам, например, земной орбиты: R = 1,496×1013 см, Т = 3,156×107 сек. Количественная величина инварианта равна для всех планет солнечной системы:

R3/T2 = 3,362×1024 см32 - const ,        (2.8)

доказывая тем самым как бы единство закономерности вращения всех планет и спутников Солнечной системы. И естественно, что к уравнениям (2.6) и (2.7) никаких претензий у специалистов математиков и астрономов не возникает. Но такие претензии появляются, если поставить вопросы: Корректно ли уравнение (2.7) астрономически (физически) поскольку прямая качественная взаимосвязь между временем Т и радиусом R отсутствует? И не скрывается ли за ним изменение течения времени на различных расстояниях от Солнца?

Вопросы не возникают уже потому, что расчет по уравнению (2.7) всегда подтверждается главным критерием истины – экспериментом. В данном случае - наблюдением за движением планет. А поскольку выражаемые сомнения в справедливости уравнения (2.7) отображаются качественными факторами, которые «опущены» в современной физике, то надо полагать, что данное уравнение скрывает, в своей простенькой формализации, «мину» замедленного действия страшной разрушительной силы и для физики, и для астрономии. Попробуем разобраться, какие же обстоятельства обусловливают существование факторов, способных изменить представление о физической сущности третьего закона Кеплера и о постулируемой неизменной скорости течения времени.

Прежде всего, отметим, что уравнение (2.7) не нарушает ни одной аксиомы, ни одного математического принципа, и с этой стороны к нему претензии отсутствуют. Оно, как уже говорилось, подтверждено главным астрономическим критерием - экспериментом и потому математически верно. Но верно ли оно физически, ведь оно описывает не так называемые обезличенные, численные математические взаимосвязи, а качественные физические зависимости и должно отображать равнозначные качественно и количественно параметры системы, которую описывает. И, следовательно, его астрономическую корректность надо рассматривать исходя из принципов не математики, а физики. Физически же в уравнении (2.7) задействованы не равнозначные, для одной системы, параметры. И, следовательно, правильный математически результат, даже подтвержденный эмпирически, может оказаться некорректным физически. Разберемся в этом вопросе подробнее.

Два параметра Т и R сведенные в уравнение (2.6) входят в систему уравнений двух различных инвариантов, описывающих различные системы. В одном вместо R фигурирует S = 2pR:

S32 = const1.                                            (2.9)

Из инварианта (2.9) этой системы взят параметр Т, а от другого инварианта:

R3пр2 = const2,                                     (2.10)

параметр другой системы R. В результате получили тоже инвариант - третий закон Кеплера (2.6) составленный, однако не из параметров одной системы, и, следовательно, сомнительный для корректного использования в физике. Это обстоятельство, с одной стороны, обусловило получение физически некорректного уравнения (2.6), а с другой - скрыло от рассмотрения величину Тпр, очень важную для понимания третьего закона Кеплера (2.6). Данный параметр Тпр мы назвали приведенным периодом времени (2.3). Он получается делением годового времени движения планеты по орбите на 2p:

Тпр. = Т/2p                                             (2.11)

Нам не удалось ни в одном учебнике по астрономии и физике, как и в другой научной литературе, обнаружить уравнение (2.11). Похоже потому, что оно не получило ни физического, ни астрономического объяснения. Понятие, приведенное время Тпр в этих науках отсутствует. В современной науке самонеподвижных физических тел оно просто не нужно. Но образованный с этим параметром инвариант (2.10) не ограничивается только отношением куба радиуса R к квадрату непонятного приведенного времени Тпр. Его образуют и другие, хорошо известные и в физике и в астрономии параметры орбитальной скорости v и напряженности гравитационного поля g (ускорения свободного падения):



2019-08-13 190 Обсуждений (0)
Краткий анализ основ геометрий 13 страница 0.00 из 5.00 0 оценок









Обсуждение в статье: Краткий анализ основ геометрий 13 страница

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (190)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.016 сек.)