Мегаобучалка Главная | О нас | Обратная связь


Разряд по увлажненной и загрязненной поверхности твердых диэлектриков.



2019-08-13 1093 Обсуждений (0)
Разряд по увлажненной и загрязненной поверхности твердых диэлектриков. 0.00 из 5.00 0 оценок




К атмосферным воздействиям, приводящим к значительному снижению напряжений перекрытия (разрядных напряжений) изоляторов, относятся дождь и увлажненные загрязнения их поверхности.

Рассмотрим развитие разряда в случае, когда поверхность изолятора загрязнена и увлажнена.

Под действием приложенного к изолятору напряжения по увлажненному слою загрязнения проходит ток утечки, нагревающий его. Так как загрязнение распределено по поверхности изолятора неравномерно и плотность тока утечки неодинакова на отдельных участках изолятора из-за сложной конфигурации его поверхности, то нагревание слоя загрязнения происходит также неравномерно. На тех участках изолятора, где плотность тока наибольшая, происходит интенсивное испарение воды и образуются подсушенные участки с повышенным сопротивлением. Распределение напряжения по поверхности изолятора меняется. Почти все напряжение, воздействующее на изоляцию, оказывается приложенным к подсушенным участкам. В результате этого подсушенные участки перекрываются искровыми каналами, называемыми частичными перемежающими дугами. Сопротивление искрового канала меньше сопротивления подсушенного участка поверхности изолятора, поэтому ток утечки возрастает. Возрастание тока утечки приводит к дальнейшему подсушиванию слоя загрязнения, а следовательно и к увеличению его сопротивления.

Интенсивное подсушивание поверхности изолятора у концов дуг приводит к их удлинению. Подсушивание всей поверхности ведет к снижению тока утечки, а увеличение длины частичных дуг – к его росту. Если результатом этого будет уменьшение тока утечки, то дуги погаснут, если же ток утечки будет расти, то частичные дуги будут удлиняться и перекроют весь изолятор. Так как параметры частичной дуги и количество дуг, одновременно существующих на поверхности изолятора, случайны, то и перекрытие также является случайным событием, характеризуемым определенной вероятностью. Вероятность перекрытия изолятора повышается с увеличением воздействующего напряжения, т. к. при этом возрастает ток утечки, что благоприятствует удлинению частичных дуг до полного перекрытия изолятора.

Из приведенной картины развития разряда следует, что разрядные напряжения изоляторов будут тем выше, чем меньше ток утечки: .

где IУ – ток утечки по изолятору; RУ – сопротивление утечки по поверхности изолятора.

Если слой загрязнения имеет толщину Δ с удельным объемным сопротивлением ρ, то для цилиндрического гладкого изолятора диаметром D имеем:

.

 - площадь кольца, - толщина.

Следовательно, разрядное напряжение изолятора будет возрастать с увеличением длины пути утечки и уменьшением диаметра изолятора:

.

Так как процессы подсушки поверхности изолятора происходят относительно медленно, то при кратковременных перенапряжениях они не успевают развиться и напряжение перекрытия бывает выше, чем при длительном воздействии напряжения.

15. Частичные разряды.

 

Под действием высокой напряженности электрического поля в изоляции в местах с пониженной электрической прочностью возникают частичные разряды (ЧР), которые представляют собой пробой газовых включений, локальные пробои малых объемов твердого диэлектрика. Условия возникновения ЧР определяются конфигурацией электрического поля изоляционной конструкции и электрическими характеристиками рассматриваемой области изоляции.

ЧР обычно не приводят к сквозному пробою диэлектрика, однако приводят к местному разрушению изоляции, а при длительном существовании могут привести и к сквозному пробою.

Возникновение ЧР всегда свидетельствует о местной неоднородности диэлектрика. В связи с этим регистрация характеристик ЧР позволяет оценивать качество изготовления изоляции и выявлять местные дефекты.

Характеристики ЧР достаточно хорошо коррелируют с размерами и количеством дефектов, т. е. позволяют судить о степени дефектности изоляционной конструкции.

Изучение характеристик ЧР в зависимости от различных условий работы стало вопросом первостепенной важности для кабелей, конденсаторов, трансформаторов и других устройств – там, где применяется слоистая изоляция при переменном, постоянном, пульсирующем и импульсном напряжениях.

При рассмотрении механизма возникновения ЧР воспользуемся эквивалентной схемой замещения диэлектрика с общей емкостью СЭ.

Схема замещения твердого диэлектрика: С0 – емкость бездефектной изоляции;Св – емкость воздушного включения;Сд – емкость диэлектрика последовательно с включением;Uв – напряжение пробоя воздушного включения.

.

ЧР возникают тогда, когда напряжение на включении достигает пробивного значения UПР – напряжения зажигания разряда во включении. Напряженность электрического поля во включении ЕВ связана с напряженностью в остальной части диэлектрика: .

где Eд – напряженность электрического поля в диэлектрике; εд – относительная диэлектрическая проницаемость диэлектрика; εв – относительная диэлектрическая проницаемость включения.

Эпюры напряжения на включении в процессе приложения переменного напряжения приведены:

Эпюры напряжения на воздушном включении в твердом диэлектрике: 1 – напряжение на образце; 2 – напряжение на включении; Uпр – напряжение на образце, при котором происходит пробой воздушного включения.

Наибольшую опасность ЧР представляют на переменном или импульсном напряжении.

Разрушающее действие ЧР на диэлектрики обусловлено следующими факторами, возникающими при пробое включения:

1– воздействием ударных волн;

2– тепловым воздействием;

3– бомбардировкой заряженными частицами;

4– воздействием химически активными продуктами разряда (озон, окислы азота);

5– воздействием излучения;

6– развитием древовидных побегов-дендритов.

В зависимости от величины заряда qЧР, измеряемого при ЧР, возможна классификация ЧР по qЧР:

1.При превышении некоторого порога напряжения в изоляции возникают ЧР с интенсивностью qЧР =10–12–10–11 Кл. Такие ЧР не вызывают быстрого разрушения изоляции и во многих случаях могут быть допустимы. Такие разряды называются начальными.

2.Дальнейшее возрастание напряжения или увеличение размеров включений в процессе длительной работы изоляции приводит к резкому возрастанию интенсивности ЧР, причем прежде всего возрастает qЧР до величины qЧР =10–10–10–8 Кл. Их возникновение резко сокращает срок службы изоляции, и они не должны допускаться при рабочих условиях. Такие разряды называются критическими.

16. Тепловое старение внутренней изоляции. Тепловой и электрический пробой.

 

Тепловое старение, т. е. постепенное ухудшение характеристик внутренней изоляции при длительном нагреве, происходит вследствие того, что при повышении температуры возникают или уско­ряются химические процессы в изоляционных материалах.

Диэлектрические материалы, используемые для изготов­ления внутренней изоляции установок высокого напряже­ния, при комнатной температуре практически инертны. Однако при рабочих температурах (60-130°С) в этих ма­териалах возникают или резко ускоряются химические ре­акции. Сущность этих реакций обычно весьма сложна и зависит от химического состава материалов, количества содержащейся в изоляции влаги, доступа кислорода из окружающего воздуха и ряда других факторов. На ход этих реакций могут оказывать влияние проводниковые и другие материалы, входящие в конструкцию. Например, медь проводников может быть катализатором термоокислительных процессов в минеральных маслах.

Во всех случаях химические реакции, протекающие в изоляции при нагреве, приводят к постепенному изменению структуры и свойств материалов и как следствие — к ухуд­шению свойств всей изоляции в целом. Эти процессы име­нуют тепловым старением.

Для твердых диэлектрических материалов наиболее ха­рактерным является постепенное снижение механической прочности в процессе теплового старения. Со временем это приводит к повреждению изоляции под действием механи­ческих нагрузок и затем уже к пробою.

В жидких диэлектриках в результате теплового старения образуются газообразные, жидкие и твердые продукты реакций. По мере накопления этих продуктов, загрязняющих изоляцию, проводимость и диэлектрические потери растут, а электрическая прочность снижается.

В комбинированной внутренней изоляции, содержащей жидкие и твердые материалы, тепловое старение влечет за собой как снижение механической прочности соответствующих элементов, так и ухудшение электрических характеристик всей изоляции.

Темпы теплового старения внутренней изоляции определяются скоростями химических реакций, зависящими от температуры в соответствии с уравнением Аррениуса где v - скорость химической реакции.

Срок службы изоляции при тепловом старении обратно пропорционален скорости химических реакций. При разных температурах  и  отношения сроков службы изоляции

где DТ - повышение температуры, вызывающее сокращение срока службы изоляции при тепловом старении в 2 раза.

Значение DТ для разных видов внутренней изоляции лежит в пределах от 8 до 12°С и в среднем составляет 10°С.

Тепловой пробой.

Развитие теплового пробоя в твердом диэлектрике в общих чертах может быть представлено в виде следующей последовательности:

Uд →Iд→Tд ↑ → γ↑и tg δ ↑ →Iд ↑ →Tд ↑и т. д.,

где Uд – напряжение, приложенное к изоляции; Iд – ток, текущий через изоляцию; Tд – температура изоляции; γ – проводимость изоляции; tg δ – диэлектрические потери в изоляции.

Под действием приложенного напряжения в изоляции возникают диэлектрические потери, обусловленные нали­чием у любой реальной изоляции небольшой проводимости и рассеянием энергии при некоторых видах поляризации. За счет диэлектрических потерь происходит дополнитель­ный разогрев изоляции.

Мощность диэлектрических потерь в изоляции определя­ется выражением РД C tgδ U2,

Мощность потока тепла, отводимого от изоляции в окружающую среду РОТВ = a S(TT0),

где ω – угловая частота; С – емкость изделии; tg δ – диэлектрические потери в изоляции; a – коэффициент теплопередачи; S – площадь поверхности изоляции;Т0 – температура окружающей среды; Т – температура внутри диэлектрика.

Для многих видов внутренней изоляции величина tgб растет при повышении температуры Т в соответствии с выражением ,

где a — коэффициент, зависящий от свойств изоляции {а »0,02 1/ОС); Т0 — температура окружающей среды.

Таким образом, мощность диэлектрических потерь в изоляции при заданном напряжении зависит от темпера­туры Т.

Зависимости P Д = f ( T ), соответствующие трем значе­ниям воздействующего на изоляцию напряжения U 1 < U 2 < U 3  и зависимость РОТВ = f (Т) показаны на рис.. Как видно, при напряжениях U 1 и U 2 кривые P Д = f ( T ) и РОТВ = f (Т) пересекаются при температурах Т1 и T 2. Это означает, что при указанных напряжениях достигаются установившиеся режимы нагрева изоляции, при которых соблюдается баланс выделяемой в изоляции и отводимой от нее тепловой энергии. Однако при U > U 3 мощность по­терь в изоляции при любой температуре будет превышать мощность отвода тепла. Следовательно, при U > U 3 прои­зойдет нарушение теплового баланса изоляции, темпера­тура последней будет неограниченно расти до потери изо­ляцией диэлектрических свойств — произойдет тепловой пробой.

Изложенная выше упрощенная модель теплового про­боя относится к случаю, когда время приложения напря­жения t значительно превышает постоянную времени на­грева изоляции tн и, следовательно, могут достигаться ус­тановившиеся режимы нагрева конструкции. Однако теп­ловой пробой возможен и при t, соизмеримых с tн, и даже при t<tH. В этих случаях механизм теплового пробоя сложнее, но сущность его остается прежней — разогрев изо­ляции за счет диэлектрических потерь до температуры, при которой происходит разрушение изоляции. В этой об­ласти времен t напряжение U пр теплового пробоя возра­стает при уменьшении t, так как для разогрева изоляции до одной и той же температуры разрушения за более ко­роткое время нужна большая мощность диэлектрических потерь.

Сущность теплового пробоя – разогрев изоляции за счёт диэлектрических потерь до температуры, при которой происходит разрушение изоляции.

Электрический пробой.

Основными процессами в данном случае являются ускорение свободных электронов и ударная ионизация.  зависит от площади электродов  и объёма изоляции .

С ростом площади электродов и объёма изоляции увеличивается вероятность появления в изоляции слабых участков. В масляном промежутке наличие влаги способствует слиянию капель для образования тончайших каналов, соответственно, площадь снижается. Для увеличения электрической прочности используют покрытие и изолирование электродов слоями кабельной бумаги и барьерами. Для бумажно-масляной изоляции уменьшение толщины бумаги приводит к сокращению масляных прослоек, соответственно, электрическая прочность возрастает. Для изоляции из тонкой бумаги с толщиной  прочность зависит от числа листов в слое, используется в силовых конденсаторах. При числе слоев более 5 электрическая прочность снижается.

 

 

17. Распределение напряжения по гирлянде изоляторов, выбор числа изоляторов в гирлянде.

 

Переменное и импульсное напряжение распределяются по изоляторам гирлянды неравномерно, и чем больше изоляторов в них, тем неравномерное распределение напряжения.

Рис. 1.1. Гирлянда изоляторов (а) и схема замещения гирлянды (б)

 – собственные емкости изоляторов;  – емкости металлических элементов изоляторов относительно заземленных частей сооружения (опоры, заземленных тросов и т.д.);

 – емкости этих же элементов относительно частей установки, находящихся под напряжением (проводов, арматуры); - сопротивления утечки по поверхности изоляторов.

Общая ёмкость изоляторов гирлянды Сг=К/n, где n – число изоляторов в гирлянде.

Если: Сг>>С1 и С2, то распределение напряжения равномерно.

Если: Сг»С1 и Сг»С2, то распределение напряжения неравномерно.

Если: С2=0, а С1¹0, то наибольшее падение напряжения на первом проводе от изолятора.

Если: С2¹0, а С1=0, то наибольшее падение напряжение на первом изоляторе от траверсы.

В реальных условиях С12 поэтому DU1max на первом от провода изоляторе и уменьшается с удалением от него, но при приближении к траверсе опять несколько возрастает.

При удалении от первого изолятора падение напряжения снижается, а при приближении к траверсе падение напряжения увеличивается.

При увлажненном загрязнении поверхностей изоляторов, а также под дождём распределение напряжения вдоль гирлянды выравнивается, поскольку в этих случаях оно определяется главным образом сопротивлениями утечки изоляторов.

Выбор числа изоляторов:

L у – Длина пути утечки изолятора – наименьшее расстояние по поверхности изолирующей части между двумя электродами.

Разряд на отдельных участках изолятора может отрываться от поверхности и развиваться в воздухе. В результате этого влагоразрядные напряжения оказываются пропорциональны на Lу, а эффективной длине утечки: .

К – коэффициент эффективности изолятора.

В качестве характеристики надёжности изоляторов при рабочем напряжении принята удельная эффективная длина пути утечки: .

 – нормируется в зависимости от степени загрязненности атмосферы и номинального напряжения установки.

Для надёжной эксплуатации при рабочем напряжении геометрическая длина пути утечки изоляторов должна определяться как: .

Число изоляторов гирлянде должно быть: .

– геометрическая длина пути утечки одного изолятора

 – наибольшее рабочее междуфазное напряжение, т.е. линейное.

18. 20. Изоляция силовых трансформаторов и высоковольтных вводов.

 

В силовых трансформаторах изоляция состоит из различных по конструкции элементов, работающих в разных условиях. Воздушные промежутки между вводами и по их поверхности – внешняя изоляция. Изоляционные участки, расположенные внутри бака трансформатора и внутри вводов, – внутренняя изоляция. Внутренняя изоляция подразделяется на главную и продольную. Главная изоляция – между разными обмотками, стенками бака, магнитопроводом и др. Продольная изоляция – между элементами одной и той же обмотки: между витками, слоями, катушками.

В высоковольтных силовых трансформаторах в качестве главной используется маслобарьерная изоляция. Продольная изоляция выполняется бумажно-масляной. Количество барьеров зависит от номинального напряжения трансформатора.

На рис. 2.6 приведено схематическое устройство главной изоляции высоковольтного трансформатора.

Высоковольтные обмотки выполняются катушечного типа или непрерывной цилиндрической многослойной намоткой.

Трансформаторы до 35 кВ выполняются с изолированной нейтралью. Трансформаторы свыше 110 кВ – с заземленной нейтралью.

Схема устройства изоляции высоковольтного трансформатора: 1 – магнитопровод; 2 – низковольтная обмотка (НВ); 3 – высоковольтная обмотка (ВВ); 4 – барьер; 5 – щитки электроизоляции; 6 – масло.

Вводы – это проходные изоляторы на 110 кВ и выше. Они содержат внешнюю и внутреннюю изоляцию сложной конструкции. Внешней изоляцией является фарфоровая покрышка. Внутренняя – участки изоляции в теле ввода. Вводы бывают двух типов: маслобарьерные и бумажномасляные (для UH ≥ 220 кВ).

1) Маслобарьерный ввод 110…150 кВ конденсаторного типа (см. рис. 2.3). Чтобы повысить Uпр, разбивают промежуток наn малых промежутков барьерами 5 и выравнивают поле металлическими обкладками (фольга на барьерах). В результате Uпр повышается в ~ 2,5 раза.

Обкладки выравнивают поле в радиальном и аксиальном направлениях. Наиболее важно выровнять поле в аксиальном направлении для уменьшения длины ввода. Для этого уступы делают одинаковыми. На рис. 2.4 приведены эпюры распределения напряженностей электрического поля в радиальном (а) и аксиальном (б) направлениях маслобарьерного ввода.

Токоведущий стержень обматывается несколькими слоями бумаги. Основную электрическую прочность изоляции ввода обеспечивает масло, находящееся внутри покрышки.

2) Бумажно-масляный ввод конденсаторного типа на класс напряженияU ≥ 220 кВ. Ввод изготавливается путем намотки на токоведущий стержень (или трубу) изоляционного тела из бумаги. Через каждые 2…4 мм намотки бумаги в тело закладываются конденсаторные обкладки из алюминиевой фольги для выравнивания поля в осевом и радиальном направлениях. После намотки тело пропитывается маслом в вакууме, а после сборки ввод герметизируется.

 Рис. 2.3. Конструктивная схема маслобарьерного ввода:

1 – токопровод (стержень); 2 – высоковольтный фланец; 3 – заземленный фланец; 4 – фарфоровая рубашка; 5 – барьеры с обкладками; 6 – масло

 Рис. 2.4. Распределение напряженности электрического поля в радиальном (а) и аксиальном (б) направлениях ввода: rc – радиус токопровода (стержня); r1 – радиус первой обкладки (фольги); r2 – радиус второй обкладки (фольги)rф – радиус обкладки у фланца (заземлена); ∆hс – длина уступа изоляции у стержня; ∆h1 – длина уступа на первом барьере; ∆h2 – длина уступа на втором барьере; ∆hф – длина уступа на барьере у фланца.

 

19. Изоляция КРУЭ.

21. Изоляция вращающихся машин.

 

К вращающимся машинам высокого напряжения относятся турбо- и гидрогенераторы, синхронные компенсаторы и двигатели большой мощности с номинальным напряжением 3 кВ и выше. Они выполняют важные функции в энергосистемах и на промышленных предприятиях.

К их изоляции предъявляются очень высокие требования. Гидрогенераторы разрабатываются и изготавливаются на напряжение до 220 кВ. Устройство изоляции вращающейся машины высокого напряжения определяется конструкцией ее статорной обмотки. Изоляция статорных обмоток подразделяется на главную (корпусную) и продольную. Главная – изоляция между проводниками обмотки и корпусом. Она имеет разную конструкцию на пазовых и лобовых частях катушек, а также на выводах (линейных и у нейтрали).

Междуфазная изоляция - изоляция между обмотками различных фаз.

К продольной относится изоляция между витками одной катушки, т.е. междувитковая (у стержневых обмоток отсутствует), а также изоляция между уложенными в одном пазу катушками.

Междувитковой изоляцией, а также изоляцией между элементарными проводниками обычно служит собственная изоляция обмоточных проводов.

Большое значение имеет регулирование электрического поля в изоляции статорной обмотки. Основная задача регулирования электрических полей – устранение частичных разрядов в воздушных зазорах между поверхностью изоляции и стенками пазов и устранение скользящих разрядов по поверхности изоляции, в местах выхода обмоток из паза статора, где поле получается резконеоднородным. Для этого используются полупроводящие покрытия из железистой асбестовой ленты и различные лаки. На рис. приведено устройство высоковольтной изоляции в пазу электрической машины.

Схема устройства высоковольтной изоляции электрической машины: 1 – статор; 2 – проводник сплошной; 3 – проводник полый; 4 – витковая (продольная) изоляция; 5 – главная корпусная изоляция; 6 – полупроводящее покрытие; 7 – прокладки; 8 – клин.

Изоляционные материалы, которые используются в электрических машинах, изготавливают на основе слюды (миканит, микаленты, микафорий). Широко используются компаунды (термопластичные), в качестве связующих применяют термореактивные лаки и смолы.

 

22. Изоляция силовых конденсаторов.

 

Назначение конденсаторов:

1)улучшение cos ϕ;

2)ВЧ-связь;

3)компенсация сдвига по фазе между током и напряжением;

4)выпрямительные установки – фильтры и др.;

5)высоковольтные импульсные установки.

В качестве изоляции используются: газ, жидкости, твердые неорганические материалы, твердые органические материалы. Твердая изоляция в высоковольтных конденсаторах (чаще органическая) – бумага, пленки с пропиткой маслом. Конденсатор характеризуется удельной запасаемой энергией, например Дж/дм3: .

Высоковольтные конденсаторы разного назначения, разных номинальных напряжений и реактивной мощности устроены одинаково: состоят из пакетов секций, соединенных последовательно-параллельнои расположенных в герметизированном корпусе, залитом пропиточной жидкостью.

Основным элементом любого силового конденсатора является секция – спирально намотанный рулон из лент диэлектрика и алюминиевых обкладок, выполняющих роль электродов (рис. ). Секции после намотки сплющивают для уменьшения объема.

Устройство секции высоковольтного конденсатора:

1 – фольга; 2 – диэлектрик (слои бумаги, пленки); 3 – выводы.

 

 

23. Регулирование электрических полей во внутренней изоляции.

 

Внутренняя изоляция – те элементы или участки электроизоляционной конструкции, в пределах которой изоляционные промежутки между проводниками заполнены газообразными, жидкими или твердыми диэлектрическими материалами или их комбинацией, но не атмосферным воздухом.

Целью регулирования электрических полей является повышение эффективности использования изоляции. Для надежной эксплуатации изоляции необходимо, чтобы мак­симальные напряженности поля не превосходили допустимого значения . Если выразить Емакс через коэффициентом неоднородности электрического поля kн = Емаксср и среднюю напряженность поля Еср= U / d (U – рабоченн напряжение, d – толщина изоляции), то получим  или .

где Едоп - допустимая напряженность, соответствующая отсутствию разрядных процессов в изоляции при данном виде воздействующего напряжения Uвозд (импульсном, одноминутном испытательном, рабочем).

Последнее означает, что при заданном значении  необходимая толщина изоляции пропорциональна коэффи­циенту неоднородности поля. Иными словами, толщина изоляции минимальна, если поле однородно. Поэтому ос­новной задачей регулирования электрических полей явля­ется снижение коэффициента неоднородности.

Следует заметить, что уменьшение толщины изоляции может повлиять на некоторые другие характеристики ап­паратуры, поскольку при этом могут улучшиться условия ее охлаждения.

В резко неоднородных электрических полях (kн > 3) принципиально допустимы разрядные процессы в малых объемах изоляции при условии, что выделяемая при этом энергия недостаточна для разрушения изоляции.

Для снижения степени неоднородности поля (уменьшения kн) или уменьшения областей с особенно большими напряжённостями поля применяется регулирование электрических полей. Регулирование полей позволяет уменьшить толщину изоляции при сохранении её электрической прочности. В зависимости от конструкции и технологии изготовления изоляции применяют различные способы регулирования.

1. Скругление краев электродов. При отсутствии скругления острые края электродов имеют очень малый радиус кривизны и kн достигает 5.. 10, т. е. поле резконеоднородное.

При r > 0,5*S – поле слабонеоднородное, а при r/S > 1,0 - kн не превышает 1,3. (Здесь r - радиус скругления; S- расстояние между электродами.

2. Полупроводящее покрытие. Применяется, когда электрод с острой кромкой находится в газе или жидкости и примыкает к твердому диэлектрику. При этом эффект от скругления электрода будет наименьший из-за щели, где напряженность поля увеличивается из-за различия проницаемости двух сред.

 Регулирование электрического поля с помощью полупро водящего покрытия.а — устройство изоляции (на участке АВ — покрытие); б —схема замещения; в — изменение напряженности Ех вдоль поверхности твердой изоляции.

3. Дополнительные электроды. Такой способ регулирования электрического поля у острого края электрода наиболее удобен в случае многослойной изоляции (бумажнопропитанной, маслобарьерной). Дополнительные электроды выполняются из тонкой металлической фольги. Дополнительные электроды широко используются для регулирования электрических полей в проходных изоляторах и кабельных муфтах.

 

Регулирование электрического поля у края электрода в плоской изоляции с помощью дополнительных электродов 1 — основные электроды; 2— дополнительные электроды

В рассмотренном случае и при наличии дополнительных электродов электрическое поле у края верхнего электрода остается резконеоднородным. Кроме того, появляются новые участки с резконеоднородным полем у краев дополнительных электродов. Однако размеры каждой области с повышенной напряженностью оказываются меньшими. Это затрудняет появление разрядов и позволяет повысить допустимое напряжение. Конструкция, показанная на рис., называется конденсаторной разделкой края электрода.

4. Градирование изоляции применяется, как правило, в изоляционных конструкциях с электродами в виде соосных цилиндров, например в кабелях ВН, и позволяет выравнивать эл. поле в радиальном направлении. Регулирование поля достигается за счёт изменения диэлектрической проницаемости слоев изоляции

Дополнительные электроды широко используются для регулирования электрических полей в проходных изоляторах и кабельных муфтах.

Градирование изоляции применяется, как правило, в изоляционных конструкциях с электродами в виде соосных цилиндров, например в кабелях высокого напряжения, и позволяет выравнивать электрическое поле в радиальном направлении. Регулирование поля достигается за счет изменения диэлектрической проницаемости слоев изоляции. Без градировании ,С градированием .
Регулирование электрического поля путем градирования изоляции.а — схема градированной изоляции: б – изменение напряженности в изоляции без градирования и при градировании.

Все рассмотренные способы применяются для регулирования электрических полей в изоляции, работающей при переменном напряжении, а некоторые, например скругление краев электродов, — и при постоянном напряжении.

Виды внутренней изоляции:

1) Бумажная пропитанная изоляция. Сначала изоляция подвергается сушке под вакуумом, затем пропитке, а после этого она прессуется для исключения газовых включений;

2) Маслонаполненная изоляция (например, бак трансформатора);

3) Маслобарьерная изоляция. Между электродами устанавливаются барьеры из картона для повышения разрядного напряжения;

4) Изоляция на основе слюды. Слюда обладает высокойнагревостойкостью, используется во вращающихся машинах. Из слюды и пропитки на основе битумных компаундов получают компаундированную изоляцию. Её недостаток – она термопластична (размягчается при нагревании). Термореактивная изоляция слюда пропитана эпоксидными смолами. Плюсы: не размягчается под действием температуры.

4) Литая изоляция на основе эпоксидных смол. Такую изоляцию заливают под давлением для исключения газовых включений. Плюсы: стойкость к воздействию воды и масел.

 

24. Способы контроля состояния изоляции высоковольтного оборудования.

 

25. Тепловизионный контроль, оборудования, условия проведения, ограничения.

 

26. Молния как источник грозовых перенапряжений.

 

Молния - разновидность газового разряда при очень большой длине искры. Общая длина канала молнии достигает нескольких километров, причем значительная часть этого канала находится внутри грозового облака. В облаке образуется несколько изолированных друг от друга скоплений зарядов ( в нижней части облака скапливаются преимущественно заряды отрицательной полярности), молния бывает обычно многократной, т.е. состоит из нескольких единичных разрядов, развивающихся по одному и тому же пути.

Молния представляет собой электрический разряд между облаком и землей или между облаками. Молнии предшествует процесс разделения и накопления электрических зарядов в грозовых облаках, происходящий в результате возникновения в облаках мощных восходящих воздушных потоков и интенсивной конденсации в них водяных паров.

Капли воды, достигшие области отрицательных температур, замерзают. Замерзание начинается с поверхности капли, которая покрывается тонкой корочкой льда. Выделяющееся при этом тепло поддерживает температуру внутри капли около 0°С. Имеющиеся в воде положительные ионы под действием разности температур перемещаются к поверхностному слою капли и заряжают его положительно, в то время как жидкой части капли (сердцевине) сообщается при этом избыточный отрицательный заряд. Когда замерзает сердцевина капли, то вследствие ее расширения ранее замерзший поверхностный слой лопается и его положительно заряженные осколки уносятся потоком воздуха в верхние части облака. Таким образом, нижняя часть грозового облака оказывается заряженной отрицательно, а верхняя положительно. Это один из основных процессов электризации грозовых облаков, и поэтому в большинстве случаев (до 90%) молнии бывают отрицательными, т.е. переносят на землю отрицательный заряд.

Грозовое облако, заряженное с нижней стороны в основном отрицательными зарядами, образует гигантский конденсатор, другой «обкладкой» которого является земля, где на поверхности индуктируются положительные заряды.

По мере концентрации в нижней части облака отрицательных зарядов увеличивается напряженность электрического поля, и когда она достигает критического значения (20-24 кВ/см в зависимости от высоты облака над землей), происходит ионизация воздуха и в сторону земли начинает развиваться разряд.

Механизм развития молнии

1)Начальная стадия – лидерная

Молния представляет собой относительно медленно (V»1,5×105 м/с) развивающийся слабо светящийся канал – лидер. Зона ионизации лидера имеет избыточный заряд того же знака, что и облако. Заряды облака и лидера индуктируют на поверхности земли и на расположенных на ней объектах заряды другого знака. По мере приближения лидера к земле индуктированный заряд и напряженность поля на вершинах возвышающихся над поверхностью земли объектах возрастают и с них могут начать развиваться встречные лидеры, имеющие заряды, по знаку о



2019-08-13 1093 Обсуждений (0)
Разряд по увлажненной и загрязненной поверхности твердых диэлектриков. 0.00 из 5.00 0 оценок









Обсуждение в статье: Разряд по увлажненной и загрязненной поверхности твердых диэлектриков.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1093)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)