Мегаобучалка Главная | О нас | Обратная связь


Горение газообразного топлива



2019-08-13 199 Обсуждений (0)
Горение газообразного топлива 0.00 из 5.00 0 оценок




Основной характеристикой топлива является его химический состав, который выражается в процентах от общей массы или объема топлива.

Основными элементами твердого и жидкого топлива является углерод C , водород H, сера S , кислород O , азот N , минеральные примеси А, влага W. Эти элементы по-разному участвуют в процессе горения, выделяя различное количество тепла при его сжигании.

C, H и S – составляют горючую массу топлива.

О и N – составляют внутренний балласт топлива.

А и W – внешний балласт топлива.

Основными элементами газообразного топлива являются

· предельные углеводороды

· непредельные углеводороды

· водород

· оксид углерода

· диоксид углерода

· сероводород

· водяной пар

· кислород

· азот

Состав газовой смеси

Горение топлива – химическая реакция соединения горючих элементов топлива с окислителем при высокой температуре, сопровождающаяся интенсивным выделением теплоты. В качестве окислителя используют кислород воздуха.

Процессы горения разделяют на 2 группы:

1) гомогенное горение – горение газообразных горючих (характеризуется системой "газ+газ");

2) гетерогенное горение – горение твердых и жидких горючих (характеризуется системой "твердое тело+газ" или "жидкость+газ").

Процесс горения может протекать с разной скоростью – от медленного до мгновенного. Медленное горение – самовозгорание твердого топлива при его хранении на складах. Мгновенное горение представляет собой взрыв. В теплоэнергетических установках практическое значение имеет такая скорость реакции, при которой происходит устойчивое горение, т.е. при постоянной подаче в зону горения топлива и окислителя. При этом соотношение концентрации топлива и окислителя должен быть определенным. При нарушении этого соотношения (богатая смесь, бедная смесь) скорость реакции снижается и уменьшается тепловыделение на единицу объема.

Минимальная температура при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси, условий зажигания, условий отвода теплоты в каждом конкретном устройстве и т.д.

Горючий газ в смеси с окислителем сгорает в факеле. Различают два метода сжигания газа в факеле – кинетический и диффузионный. При кинетическом сжигании до начала горения газ предварительно смешивается с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. При этом скорость горения не должна превышать скорости химических реакций горения

τгорхим.

Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса будет ограничена скоростью смешивания газа с воздухом τгор = τфиз.

Кроме этого существует смешанное (диффузионно-кинетическое) горение. При этом газ предварительно смешивается с некоторым количеством воздуха, затем полученная смесь поступает в рабочий объем, где отдельно подается остальная часть воздуха.

Газовые горелки можно классифицировать по двум критериям.

Первый зависит от того, каким образом в горелку подаётся поток воздуха, необходимого для горения. Согласно этому критерию можно выделить следующие типы горелок:

Горелки с естественной тягой (инжекционные);

Горелки с форсированной тягой;

Горелки с принудительной подачей воздуха (вентиляторные).

В вентиляторных горелках подача воздуха осуществляется напорными вентиляторами. Эти вентиляторы обеспечивают более или менее постоянные напор и производительность в не зависимости от тяги.

Использование вентиляторов позволяет добиться:

широкой области регулирования;

использования вентиляторных горелок с газоплотными теплогенераторами с высоким КПД;

оптимального смешивания топлива и воздуха;

низкого избытка воздуха и (как следствие) высокое КПД горения.

Типы взрывов

 

Взрыв — это освобождение большого количества энергии в ограниченном объеме за короткий промежуток времени.

Взрыв приводит к образованию сильно нагретого газа (плазмы) с очень высоким давлением, который при моментальном расширении оказывает ударное механическое воздействие (давление, разрушение) на окружащие тела.

Взрыв в твердой среде сопровождается ее разрушением и дроблением, в воздушной или водной — вызывает образование воздушной или гидравлической ударных волн, которые и оказывают разрушающее воздействие на помещенные в них объекты.

В деятельности, не связанной с преднамеренными взрывами в условиях промышленного производства, под взрывом следует понимать быстрое, неуправляемое высвобождение энергии, которое вызывает ударную волну, движущуюся на некотором удалении от источника.

В результате взрыва вещество, заполняющее объем, в котором происходит высвобождение энергии, превращается в сильно нагретый газ (плазму) с очень высоким давлением, (до нескольких сотен тысяч атмосфер). Этот газ, моментально расширяясь оказывает ударной механическое воздействия на окружающую среду, вызвав ее движение. Взрыв в твердой среде вызывает ее дробление и разрушение в гидравлической и воздушной среде — вызывает образование гидравлической и воздушной ударной (взрывной) волны.

Взрывная волна — есть движение среды, порожденное взрывом, при котором происходит резкое повышение давления, плотности и температуры среды.

Фронт (передняя граница) взрывной волны распространяется по среде с большой скоростью, в результате чего область охваченная движением, быстро расширяется.

Посредством взрывной волны (или разлетающихся продуктов взрыва — в вакууме) взрыв производит механическое воздействие на объекты, находящиеся на различных удалениях от места взрыва. По мере увеличения расстояния от места взрыва механическое воздействие взрывной волны ослабевает. Таким образом, взрыв несет потенциальную опасность поражения людей и обладает разрушительной способностью.

Взрыв может быть вызван:

— детонацией конденсированных взрывчатых веществ (ВВ);

— быстрым сгоранием воспламеняющего облака газа или пыли;

— внезапным разрушением сосуда со сжатым газом или с перегретой жидкостью;

— смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т.д.

В зависимости от вида энергоносителей и условий энерговыделения, источниками энергии при взрыве могут быть как химические так и физические процессы.

Источником энергии химических взрывов являются быстропротекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или реакции термического разложения нестабильных соединений.

Источниками энергии сжатых газов (паров) в замкнутых объемах аппаратуры (оборудования) могут быть как внешние (энергия, используемая для сжатия тазов, нагнетания жидкостей; теплоносители, обеспечивающие нагрев жидкости и газов в замкнутом пространстве) так и внутренние (экзотермические физико-химические процессы и процессы тепломассообмена в замкнутом объеме), приводящие к интенсивному испарению жидкостей или газообразованию, росту температуры и давления без внутренних взрывных явлений.

Источником энергии ядерных взрывов являются быстропротекающие цепные ядерные реакции синтеза легких ядер изотопов водорода (дейтерия и трития) или деления тяжелых ядер изотопов урана и плутония. Физические взрывы возникают при смещении горячей и холодной жидкостей, когда температура одной из них значительно превосходит температуру кипения другой. Испарение в этом случае протекает взрывным образом. Возникающая при этом физическая детонация сопровождается возникновением ударной волны с избыточным давлением, достигающим в ряде случаев сотен МПа.

Энергоносителями химических взрывов могут быть твердые, жидкие, газообразные горючие вещества, а также аэровзвеси горючих веществ (жидких и твердых) в окислительной среде, в т.ч. и в воздухе.

Таким образом, различаются взрывы двух типов. К первому типу относят взрывы, обусловленные высвобождением химической или ядерной энергии вещества, например взрывы химических взрывчатых веществ, смесей газов, пыли и (или) паров, а также ядерные и термоядерные взрывы. При взрывах второго типа выделяется энергия, полученная веществом от внешнего источника. Примеры подобных взрывов — мощный электрический разряд в среде (в природе — молния во время грозы); испарение металлического проводника под действием тока большой силы; взрыв при воздействии на вещество некоторых излучений большой плотности энергии, напр. сфокусированного лазерного излучения; внезапное разрушение оболочки со сжатым газом.

Взрывы первого типа могут осуществляться цепным или тепловым путем. Цепной взрыв происходит в условиях, когда в системе возникают в больших концентрациях активные частицы (атомы и радикалы в химических системах, нейтроны — в ядерных), способные вызвать разветвленную цепь превращений неактивных молекул или ядер. В действительности не все активные частицы вызывают реакцию, часть их выходит за пределы объема вещества. Так как число уходящих из объема активных частиц пропорционально поверхности, для цепного взрыва существует так называемая критическая масса, при которой число вновь образующихся активных частиц еще превышает число уходящих. Возникновению цепного взрыва способствует сжатие вещества, так как при этом уменьшается поверхность. Обычно цепной взрыв газовых смесей реализуют быстрым увеличением критической массы при увеличении объема сосуда или повышением давления смеси, а взрыв ядерных материалов — быстрым соединением нескольких масс, каждая из которых меньше критической, в одну массу, большую критической.

Тепловой взрыв возникает в условиях, когда выделение тепла в результате химической реакции в заданном объеме вещества превышает кол-во тепла, отводимого через внешнюю поверхность, ограничивающую этот объем, в окружающую среду посредством теплопроводности. Это приводит к саморазогреву вещества вплоть до его самовоспламенения и взрыва.

При взрывах любого типа происходит резкое возрастание давления вещества, окружающая очаг взрыва среда испытывает сильное сжатие и приходит в движение, которое передается от слоя к слою, — возникает взрывная волна. Скачкообразное изменение состояния вещества (давления, плотности, скорости движения) на фронте взрывной волны, распространяющееся со скоростью, превышающей скорость звука в среде, представляет собой ударную волну. Законы сохранения массы и импульса связывают скорость фронта волны, скорость движения вещества за фронтом, сжимаемость и давление вещества.


 

ЗАКЛЮЧЕНИЕ

 

 

Причинами большинства аварий, катастроф, стихийных бедствий и несчастных случаев служат пожары и взрывы.

Одним из первых химических явлений, с которым человечество познакомилось на заре своего существования, было горение.

Горением называется быстропротекающее химическое превращение веществ с выделением большого количества тепла и сопровождающееся ярким пламенем. Оно может явиться результатом окисления, т.е. соединением горючего вещества с окислителем (кислородом).

Взрыв – это крайне быстрое химическое или физическое превращение вещества, сопровождающееся выделением большого количества газов, тепловой энергии и, как следствие, резким повышением давления и возникновением ударной (взрывной) волны, что приводит в итоге к пожарам, разрушениям и травмам людей.

В основе пожаров и большинства взрывов лежат процессы горения. И знание теоретических основ возникновения и протекания процессов воспламенения, горения и взрыва позволит Вам:

· во-первых, прогнозировать вероятность возникновения пожара и взрыва в конкретных производственных условиях или ЧС;

· во-вторых, определять пожаро- и взрывоопасность веществ, технологических процессов и промышленных производств;

· в-третьих, применять правильные меры, методы и средства защиты от взрывов и тушения пожаров.


 

 

Список литературы

1. Зельдович Я.Б., Математическая теория горения и взрыва. — М.: Наука, 2000. — 478 с.

2. Вильямс Ф.А., Теория горения. — М.: Наука, 2001. — 615 с.

3. Хитрин Л.Н., Физика горения и взрыва. — М.: ИНФРА-М, 2007. — 428 с.

Ссылки (links):
www.xumuk.ru/encyklopedia/2/2822.htmlwww.xumuk.ru/encyklopedia/2650.htmlwww.xumuk.ru/lekenc/8300.htmlwww.xumuk.ru/encyklopedia/1165.htmlwww.xumuk.ru/biospravochnik/324.htmlwww.xumuk.ru/encyklopedia/2/4356.htmlwww.xumuk.ru/encyklopedia/2/3955.htmlwww.xumuk.ru/encyklopedia/2/4645.htmlwww.xumuk.ru/encyklopedia/2/4156.htmlwww.xumuk.ru/encyklopedia/2/4043.html

 

 



2019-08-13 199 Обсуждений (0)
Горение газообразного топлива 0.00 из 5.00 0 оценок









Обсуждение в статье: Горение газообразного топлива

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (199)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)