Мегаобучалка Главная | О нас | Обратная связь


Основные характеристики источников излучения



2019-10-11 165 Обсуждений (0)
Основные характеристики источников излучения 0.00 из 5.00 0 оценок




Источник ионизирующего излучения - это объект, содержащий радиоактивный материал или техническое устройство, испускающее или способное в определенных условиях испускать ионизирующее излучение.

a-источники. Преимущественно альфа-излучение наблюдается у естественных радионуклидов: радия, тория, урана и других элементов с большим атомным числом. Кроме естественных a-активных ядер, с испусканием a-частицы распадается подавляющее большинство искусственно полученных радиоактивных элементов, следующих за свинцом. Старость вылетающих, из ядер радиоактивных атомов a-частиц лежит в диапазоне (4-6) - 103 м/с, энергия порядка 2-9МэВ.

Альфа-излучение источников имеет преимущества по сравнению с другими видами излучения (высокая ионизирующая способность, моноэнерготичность a-частиц, постоянство ионизации вдоль пути частицы), но малый пробег в веществе и трудности изготовления достаточно мощных a-источников несколько ограничивают их использование.

Чаще. всего источники; представляют собой подложки из коррозийно-стойкой стали или керамики в алюминиевых корпусах, в углубление которых помещены радионуклиды плутония. Энергетическое распределение a-частиц дискретно, их энергии определены с точностью до четвертого знака. Малая естественная ширина линий, хорошо известные значения энергии каждой группы a-частиц позволяют использовать радиоактивные a-источники для определения энергетической шкалы и энергетического разрешения детекторов. Для реализации этих свойств a-источники изготавливают в виде слоя толщиной много меньше линейного пробега частицы в веществе источника, с том, чтобы неопределенность. в анергии a-частиц, вышедших из слоя конечной толщины, была впалой.

b-источники. Известны три типа b-распада нестабильных ядер, которые сопровождаются излучением электрона, позитрона ила захватом атомного электрона. Характерные особенности этих процессов состоят в том, что электроны в отличие от a-частиц не являются моноэнергетическими, а обладают энергиями от некоторого максимума до нуля. Еmax принимает значения от 15 кэВ до 15 МэВ, при этом с увеличением энергии, выделяемой при b-распаде, уменьшается период полураспада. Удельная ионизирующая способность b-частиц в несколько раз меньше, чем у a-частиц той же энергии и значительно больше, чем у g-квантов.

Известно свыше семисот искусственных b-изотопов, расположенных довольно равномерно по всей периодической системе Менделеева. Трудно назвать элемент, не имеющий хотя бы одного b-активного изотопа. К числу их следует прибавить большое количество искусственных радиоактивных ядер преимущественно с малыми атомными номерами, попускающих позитроны.

В настоящее время разработана целая серия ампутированных источников b-излучения. Ампулы этих источников изготавливают из алюминия (его сплавов) или нержавеющей стали с рабочим окном из металлической фольги. Подложки, на которых закрепляется радиоактивный препарат, у источников b-излучения изготавливают из металла или керамики. В исампутированных источниках b-излучения для герметизации радиоактивного препарата используют покрытия в виде окисных или металлических пленок.

Источники g-излучения. Известно, что g-излучения возникают при переходах между различными энергетическими уровнями возбужденных ядер. Кроме этого, существуют еще два механизма возникновения коротковолнового электромагнитного излучения: при торможении быстрых электронов и аннигиляции электронно-позитронных пар. Практически во всех этих случаях спектр g-излучения - дискретен, а энергия g-квантов - от нескольких десятков килоэлектрон-вольт до 20 МэВ.

Чаще всего используют радиоактивные источники g-квантов, к числу которых в первую очередь относятся активные b-препараты. Период полураспада g-источника определяется периодом b-распада, как правило, энергия g-квантов меньше 3 МэВ, активность 'квантов может быть порядка 10 16 с-1.

g-источники широко применяются для градуировки детекторов, при этом особенно ценны источники, спектр которых состоит из одной или в крайнем случае из двух-трех линий, далеко отстоящих друг от друга. В табл.2 приведены основные характеристики некоторых радиоактивных g-источников, применяемых для градуировки дозиметров.

Для градуировки детекторов часто используют g-источники, являющиеся результатом возбуждения ядра вследствие ядерных реакций. На легких ядрах удобно использовать (р, g) - реакцию при энергии ускоренных протонов около 1 МэВ. Например, в реакции 9Be (pg) 10B при энергии протона около 991 кэВ возникают g-кванты с энергией 7,48 МэВ. g-кванты с энергией 20 МэВ образуются в реакции Т (р, g) 4He.

Благодаря наличию у современных ядерных реакторов мощных потоков нейтронов плотностью порядка 1018-1019 c-1м-2, удобно использовать в качестве источника g-излучения (n,g) - реакцию. Образовавшееся в результате испускания нейтрона новое ядро возбуждается, а затем излучает g-кванты. Поместив образец из подходящего материала на выходе канала в защите реактора, можно получить источник g-квантов с активностью квантов до 108 с-1.

Зная положение на энергетической шкале и интенсивность g-линий при захвате, можно сразу произвести градуировку детектора, например, полупроводникового спектрометра в широком диапазоне энергий.


Таблица 2

Изотоп Период полураспада Энергия g-квантов, кэВ Выход g-квантов на pаспад
141Се 32.5 суток 145,4 0.67
137Cs 33 года 661,1 0,92

65Zn

245 суток

1112 0,455
511,006 0,03

60Со

5,25 года

1173,2 1,0
1332,5 1,0

24Na

14,9 ч

1368.5 1,0
2753,9 1,0

 

В качестве источника g-квантов можно использовать также активную зону реактора, в которой возникают так называемые мгновенные g-кванты деления, g-излучение продуктов деления и g-излучение из (n, g) - реакции. Интенсивность g-излучение на поверхности активной зоны может быть около 1018 МэВ/ (м2*с).

Эффект излучения электромагнитных волн электронами при торможении позволяет использовать для получения g-излучения электронные ускорители. Так, например, современный электронный ускоритель со средним током 1 мкА и энергией ускоренных электронов 30-40 МэВ создает мощность дозы около 102 Гр/с в 1 м от вольфрамовой мишени.

Все рассмотренные источники излучения либо имеют сплошной' спектр, либо недостаточную для экспериментов интенсивность. Пока единственный практически осуществимый источник получения моноэнергетических g-квантов - процесс аннигиляции электронно-позитронных пар. При средних таких в линейных электронных ускорителях порядка 10 мкА можно создать источники фотонов с точно определенной энергией в десятки мегаэлектронвольт и активностью квантов 105-106 с-1.

Очень перспективно использование для получения монохроматических g-квантов квантовых генераторов света и мощных электронных ускорителей на основе обратного комптон-эффекта. Интенсивный пучок световых фотонов из лазера направляется навстречу пучку релятивистских (т.е. движущихся со скоростями, близкими к скорости распространения электромагнитных волн в свободном пространстве) электронов. Энергия фотонов вследствие рассеяния на быстрых электронах увеличивается. Согласно расчетам, при современных параметрах лазеров и ускорителей можно получить поток g-квантов 105-107 с-1 с размытием по энергии около 5%. Диапазон возможных значений энергий фотонов необычайно широк, вплоть до единиц гигаэлектрон-вольт.

Источники нейтронов. Основные характеристики нейтронных источников: поток нейтронов, энергия нейтронов, их угловое распределение, а также энергия н интенсивность сопутствующего гамма-излучения. Известны три основных типа нейтронных. источников:

1) радиоактивные, основанные на реакциях (a, n), ( g, п), и спонтанного деления;

2) ускорители;

3) ядерные реакторы.

В настоящее время источники нейтронов широко применяют в научных исследованиях, при геологической разведке, для эталонирования и градуировки аппаратуры, регистрирующей нейтроны. Одними из первых начали использоваться полоннево (радиево) - бериллиевые нейтронные источники, которые представляют собой спрессованную смесь альфа-активного вещества (22688Ra, 21084Po) с порошкообразным бериллием, основанные на реакции 94Ве+42Неà126С+10п+5,7 МэВ.

Средняя энергия нейтронов первого источника 4,2 МэВ (максимальная-до 11 МэВ). Энергия нейтронов Ra - Ве-источника составляет 13 - 15 МэВ. Недостатком первого - сравнительно короткий период полураспада (138,4 дня), а второго - интенсивное g-излучение.

Применяют также так называемые фотонейтронные источники, в которых используются пороговые реакции фоторасщепления (у, п) ядер. Они представляют собой ампулу с источником g-излучения, помещенную в бериллиевую сферу. Нейтроны, полученные с помощью подобных источников, обладают более определенной энергией. Из фотонейтронных наиболее широко распространен Ra-Be (g, n) - источник. Получение нейтронов при помощи ядерного фотоэффекта. возможно лишь в том случае, когда энергия g-квантов превышает энергию связи нейтрона в ядре. Среди стабильных ядер наименьшими значениями энергии связи отличаются имению бериллий и дейтерий.

Полный. поток нейтронов для. самопроизвольно делящихся ядер, очень мал, но зато он практически вечен.

Развитие ядерной энергетики привело к тому, что в настоящее время возможно получение трансурановых элементов, имеющих выход нейтронов в достаточных, количествах. Так, спонтанный источник 239Ри, обогащенный 240 Ри до 8%, имеет поток нейтронов 2*104 с-1.

 

Выбор датчика

 

Выбираем газоразрядный счётчик. Ниже рассмотрим его плюсы и минусы по сравнению с другими видами детекторов.

При небольшой разности потенциалов на электродах газовый детектор работает в режиме ионизационной камеры, т.е. числовое значение импульсов в некотором интервале напряжений постоянно. При дальнейшем увеличении напряжения числовое значение выходного импульса возрастает, так как при этом электроны (полученные вследствие действия ионизирующей частицы) в усилившемся электрическом поле приобретают достаточную кинетическую энергию, чтобы произвести ударную ионизацию нейтральных молекул газа на своем пути. Вновь образованные электроны в свою очередь ускоряются электрическим полем и ионизируют новые молекулы. При этом. получается лавинный разряд, который сразу прекращается, как только образованные электроны и ионы достигнут соответствующих электродов детектора (несамостоятельный разряд). Коэффициент газового усиления k изменяется от единицы до 106. Газовый ионизационный детектор, который имеет коэффициент газового усиления больше единицы и в котором отдельные акты ионизации вызывают появление на выходе электрических импульсов, называютгазоразрядным счетчиком.

Газоразрядный счетчик, который работает в режиме несамостоятельного газового разряда и в котором заряд в импульсе пропорционален первичной ионизации, называют пропорциональным счетчиком. В пропорциональных счетчиках чаще всего используют метан. или смесь метана и аргона,. которые пропускают через счетчик. Напряжение составляет 2-4 кВ. Если измеряемый радионуклид на очень тонкой подложке (для уменьшения поглощения) расположить между двумя пропорциональными счетчиками, то можно получить так называемый 4п-счетчик, который позволяет проводить измерения со 100% -ной эффективностью счета и пригоден для проведения абсолютных определений, например, при эталонировании. В настоящее время пропорциональные счетчики широко применяют в виде многопроволочных пропорциональных камер - набора проволочек малого диаметра (20-30 мкм), pacпoложенных с шагом 2-3 мм и служащих анодами. Электроды катода, расположенные с обеих сторон, также представляют собой набор проволочек, но несколько большего диаметра и с меньшим шагом. Благодаря удачному сочетанию сравнительно высоких пространственного и временного разрешений, большому быстродействию, простоте изготовления и способноси работать в магнитных полях, конструкции пропорциональных камер интенсивно совершенствуются в последние годы. Разновидность пропорциональных камер - дрейфовая камера, которая является координатным детектором, обеспечивающим высокую точность измерения.

Если продолжать увеличивать напряжение на счетчике, то после области ограниченной пропорциональности, которая не используется в детекторах, следует область Гейгера. Кинетическая энергия электронов становится столь большой, что, ударяясь об анод, они выбивают из него фотоны, которые, попадая на катод, вырывают электроны, которые ионизируют молекулы газа, - каждый вторичный электрон вызывает вспышку самостоятельного разряда. Один актпервично и ионизации в области Гейгера может вызвать такой же импульс, как и 1000 первичных актов. Если в пропорциональных счетчиках импульс на выходе пропорционален энергии частицы, то всчетчиках Гейгера-Мюллера числовое значение выходного импульса совершенно не зависит от начальной ионизации. Поэтому, если с помощью пропорционального счетчика можно определять как число ионизирующих частиц, так и их вид и энергию, то счетчик Гейгера-Мюллера можно использовать только для подсчета числа пролетевших частиц. Для гашения самостоятельного разряда в счетчиках Гейгера-Мюллера используется конденсатор и высокоомное сопротивление. С помощью внешнего контура напряжение на счетчике снижается ниже. порога зажигания. Для емкости около 10 пФ сопротивление должно быть больше или порядка 108 Ом, тогда время разрядки емкости более 10-3 с. Для многих измерений такие временные характеристики недостаточны. В настоящее время счетчики Гейгера-Мюллера вытесняются самогасящимися счетчиками. Было обнаружено, что небольшие добавки паров этилового спирта в счетчике Гейгера-Мюллера, наполненном аргоном, приводят к гашению самостоятельного разряда. Этот эффект и используется в самогасящихся счетчиках. Их, кроме одноатомного газа (аргона, неона и др.), наполняют небольшой добавкой паров одного из многоатомных органических соединений (этилового спирта, этилена. и т.п.) Молекулы примесей нейтрализуют ионы основного газа и активно поглощают кванты электромагнитного излучения, обуславливая автоматическое гашение разряда.


Рис. 1. Схема включения (а) и счетная характеристика (б) газоразрядного счетчика

 

Обозначим через N число импульсов, регистрируемых в единицу времени, - скорость импульсов, выражаемая в с-1. Зависимость скорости счета импульсов от напряжения N ( t) - счетная характеристика счетчика. На рис.1 приведена схема включения и счетная характеристика газоразрядного счетчика.

Если напряжение достигает потенциала зажигания U0, в газе возникает разряд и счетчик начинает считать импульсы. Скорость счета при увеличении напряжения возрастает и при напряжении U1 счетчик регистрирует уже все частицы, которые ионизируют газ. При дальнейшем увеличении напряжения в диапазоне U1-U2 значение скорости счета изменяется незначительно. Этот рабочий участок счетной характеристики счетчика называется плато счетчика. Наклон плато к оси абсцисс, %, определяют как отношение разности чисел отсчетов на протяжении 100 В плато к среднему числу отсчетов Nc.

Счетная характеристика тем лучше, чем больше плато по протяженности и меньше его наклон. У современных счетчиков наклон плато примерно равен 0,1% на 100 В, а протяженность плато достигает 400-500 В. Нижняя кривая на рис 1, б снята в отсутствии излучения и обусловлена естественным радиационным фоном: космическим излучением, радиоактивностью Земли, радиоактивным загрязнением воздуха. А предметов, окружающих счетчик.

Для определения мертвого времени счетчика Гейгера-Мюллера измеряют активность двух радионуклидов отдельно и вместе и из полученных скоростей счета N1, N2. и N12

Существуют различные виды газоразрядных счетчиков. Особенность конструкцииторцового счетчика - окно в торце счетчика, закрытое пластинкой из слюды толщиной 0,01 мм, через которое могут проходить мягкие b - и a-частицы. Анод счетчика - вольфрамовая нить. Один конец нити закреплен! в стеклянном корпусе счетчика, а на другом, свободном конце нити, напаян стеклянный шарик, предназначенный для предотвращения искажения электрического поля.

Для измерения числа у-квантов применяютстеклянные счетчики. Они выполнены в виде стеклянной трубки, внутренняя поверхность которой покрыта тонким проводящим слоем (медыо, графитом и др.), являющимся катодом, анодом же служит вольфрамовая пять, натянутая по оси трубки. На концах трубки устроены выводы электродов: один вывод (со знаком плюс) соединен с нитью, другой (со знаком минус) - с катодом. Для регистрации более жестких излучений применяют цилиндрические счетчики, катод которых выполнен из алюминиевой фольги, а анод - из вольфрамовой нити, кренящейся на стеклянных изоляторах.

Эффективность пропорциональных счетчиков выше, чем у ионизационных камер (в связи с наличием газового усиления), и в разных случаях составляет от долей до 100%. Эффективность счетчиков Гейгера-Мюллера от 2% (для a-частиц) до 100% для быстрых заряженных частиц. Время запаздывания для пропорциональных счетчиков от 0,1 до 2 мкс, а для счетчиков Гейгера - Мюллера - от 0,1 до 0,6 мкс.

Амплитуда выходного импульса, В, на пропорциональном счетчике примерно. в 100 раз больше амплитуды выходного сигнала ионизационной камеры.

Формы выходных сигналов цилиндрического пропорционального д самогасящегося счетчиков приведены на рис.2. Диапазон измеряемых энергий от сотен эВ до десятков МэВ.

 

Рис. 7. Формы выходных сигналов цилиндрического пропорционального (д) и самогасящегося (б) счетчиков

 

Если использовать газоразрядный счетчик в режиме коронного (искрового) разряда, то получим коронный (искровой) счетчик ионизирующих части.

 



2019-10-11 165 Обсуждений (0)
Основные характеристики источников излучения 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные характеристики источников излучения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (165)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)