Мегаобучалка Главная | О нас | Обратная связь


ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ



2019-10-11 214 Обсуждений (0)
ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ 0.00 из 5.00 0 оценок




СВОЙСТВА.

    Для сурьмы известна одна кристаллическая форма и несколько аморфных (так называемые желтая, черная и взрывчатая сурьма). При обычных условиях устойчива лишь кристаллическая сурьма; она серебристо-белого цвета с синеватым оттенком. Чистый металл при медленном охлаждение под слоем шлака образует на поверхности игольчатые кристаллы, напоминающую форму звезд. Структура кристаллов ромбоэдрическая, а=4,5064 А, а=57,10.

    Плотность кристаллической сурьмы 6,69 , жидкой 6,55г / см3. Температура плавления 630,50С, температура кипения 1635-16450С, теплота плавления 9,5ккал / г-атом, теплота испарения 49,6ккал / г-атом. Удельная теплоемкость (кал / г град):0,04987(200); 0,0537(3500); 0,0656(650-9500). Тепло проводимость (кал / ем.сек.град):

5

0,045,(00); 0,038(2000); 0,043(4000); 0,062(6500). Сурьма хрупка, легко истирается в порошок; вязкость (пуаз); 0,015(630,50); 0,082(11000). Твердость по Бринеллю для литой сурьмы 32,5-34кг / мм2, для сурьмы высокой чистоты (после зонной плавки) 26кг / мм2. Модуль упругости 7600кг / мм2, предел прочности 8,6кг / мм2, сжимаемости 2,43 10-6см2 / кг.

    Желтая сурьма получается при пропускании кислорода или воздуха в сжиженный при-900 сурьмянистый водород; уже при –500 она переходит в обыкновенную (кристаллическую) сурьму.

    Черная сурьма образуется при быстром охлаждении паров сурьмы, примерно при 4000 переходит в обыкновенную сурьму. Плотность черной сурьмы 5,3. Взрывчатая сурьма – серебристый блестящий металл с плотностью 5,64-5,97, образуется при электрическом получении сурьмы из соляно кислого раствора хлорнистой сурьмы (17-53% SbCl2 в соляной кислоте d 1,12), при плотности тока в пределах от 0,043 до 0,2 а / дм2. Полученная при этом сурьма переходит в обыкновенную с взрывом, вызываемым трением, царапаньем или прикосновением нагретого металла; взрыв обусловлен экзотермическим процессом перехода одной формы в другую.

    На воздухе при обычных условиях сурьма ( Sb ) не изменяется, нерастворима она ни в воде, ни в органических растворителях, но со многими металлами она легко даёт сплавы. В ряду напряжений сурьма располагается между водородом и медью. Водорода из кислот она, сурьма, не вытесняет и в разбавленных HCl и H2SO4 не растворяется. Однако крепкая серная кислота при нагревании переводит сурьму в сульфаты Э2 (SO4)3 . Крепкая азотная кислота окисляет сурьму до кислот H3 ЭО4. Растворы щелочей сами по себе на сурьму не действуют, но в присутствии кислорода медленно её разрушают.

    При нагревании на воздухе сурьма сгорает с образованием окислов, легко соединяется она также с га-

6

лоидами и серой. Образует сурьма определённые соединения с металлами – антимониды, например: Mg3Sb2 . Действием на это соединение разбавленных кислот получается сурьмянистый ( “ стибин ”) водород общей формулы ЭН2. Реакция идет по уравнению:

              Mg3Sb2+6HCl=3MgCl+2SbH3

Так как соединения эти весьма неустойчивы, больший или меньший их распад на элементы имеет место уже в момент образования и по этому практически они всегда выделяются в смеси со значительным количеством свободного водорода.

 Стибин представляет собой бесцветный, очень ядовитый газ, с запахом похожим на сероводородный. Отравление им может иметь место, в частности, при всех случаях получения больших количеств водорода взаимодействием цинка или железа с кислотами, если исходные продукты содержат примесь сурьмы (что бывает очень часто) и работа ведется без соблюдения достаточных мер предосторожности. Опасность усугубляется тем, что первые признаки отравления (озноб, рвота и т. д) появляются обычно лишь спустя несколько часов после вдыхания SbH3 . Основным средством первой помощи является свежий воздух при полном покое пострадавшего. Растворимость стибина ( SbH3) в воде сравнительно не велика (приблизительно 1:5 по объёму). Он является очень сильным восстановителем. Будучи подожжен на воздухе SbH3 сгорает с образованием воды и окиси ( Sb2O3) .

Окись сурьмы ( Sb2O3 ) представляет собой твердое вещество белого цвета, почти нерастворима в воде. Химические свойства, отвечающим общей формулой гидратов Э(ОН)3 по подгруппе мышьяка, в которую входит сурьма, изменяется весьма закономерно. Все они амфотерны, но если у мышьяка ( As(OH)3 и висмута (Bi(OH)3) сильно преобладает кислотный характер, то у сурьмы (Sb(OH)3) основной.

7

    Нагреванием Sb2O3 ( или Sb2O5) на воздухе может быть получен белый, почти не растворимый в воде порошок состава SbO4 . При сильном накаливании этот довольно характерный для сурьмы окисел отщепляет кислород и переходит в Sb2H3 . С плавлением его со щелочами могут быть получены соли типа M2Sb2O3 . Как сам окисел Sb2O4, так и производные от него соли содержат, вероятно, в своём составе одновременно трёх и пятивалентную сурьму и отвечают структурам (SbO)SbO3 и (SbO[SbO4]) . Наличие в молекуле одновременно атомов трёх и пятивалентной сурьмы было непосредственно результатами рентгеновского анализа кристаллов.

    Гидрат окиси сурьмы (иначе сурьмянистая кислота) представляет собой белые, почти нерастворимые хлопьевидные осадки, легко переходящие с отщеплением воды в соответствующие окиси. Для этого элемента характерны продукты частичного обезвоживания гидрата SbO(OH) . Отвечающий ему радикал – SbO (антимонил) часто входит как таковой в состав солей и играет в них роль одновалентного металла.

    Растворенная часть гидрата окиси сурьмы способна диссоциировать одновременно по суммарным схемам:

              Э ’’’+3OH’ Û Э( OH)3 Û H3 ЭО3 Û 3Н+3О3 ’’’

При добавлении к раствору кислоты равновесие смещается влево, и образуются соли с катионом Э ’’’ , а при добавлении щелочей равновесие смещается вправо и получается сурьмянисто кислые (антимониты) соли с анионом ЭО 3 ’’’ . Кислотная диссоциация может протекать также и с отщеплением молекул воды по типу Н3ЭО3 Û Н+ЭО22О, причем получаются соли метасурьмянистой кислоты ( HSbO2) , но она является очень слабой.

    Так как основные свойства гидроокисей Э(ОН)3 сурьмы усиливаются, в то же время возникает устойчивость сурьмянисто кислой соли с катионом Э '’' . В частности, производные кислородных кислот для Sb’’’ известны как единичные их представители, а именно раст-

8

ворением Sb ( или Sb2O3) в горячей концентрированной серной кислоте может быть получен нормальный сульфат сурьмы – Sb2(SO4)3 . С небольшим количеством воды соль эта дает кристаллогидрат, при дальнейшем же разбавлении раствора образуется сперва сульфат антимонила [(SbO2)SO4], а затем наступает дальнейший гидролиз. Весьма характерна для сурьмы смешанная виннокислая соль антимонила и калия состава К( SbO)C4H4O6 H2O . Соль эта ( “ рвотный камень ”) легко образуется при кипячении Sb2O3 c раствором кислого виннокислого калия ( KHC4H4O6) и представляет собой бесцветные кристаллы, легко растворимые в воде. Она находит применение в медицине и в красильном производстве.

    Параллельно с ослаблением кислотных и усилением основных свойств гидроокиси сурьмы ослабляются также и восстановительные свойства, т.к. уменьшатся тенденция элементов к переходу в соединения их высшей валентности. Вообще то сурьмянистая кислота типичным восстановителем не является, хотя окисление её в щелочной среде идет довольно легко.

    Высший окисел Sb сурьмянистый ангидрид (Sb2O3 ) при непосредственном взаимодействии элементов с кислородом не образуется, но он может быть получен осторожным нагреванием гидратов, образующихся при окислении сурьмы крепкой азотной кислотой. Сурьмяный ангидрид представляет собой желтоватый порошок, очень мало растворимый в воде.

    Соли сурьмяной кислоты (сурьмяно-кислые или антимонаты) производятся обычно из гексагидроксисурьмяной кислоты – H[Sb(OH)6], отвечающей дополнительно гидратированной мета форме HsbO3 3H2O . Подобно фосфатам сурьмяно-кислые соли, как правило, бесцветны и трудно растворимы в воде. Сурьмяный ангидрит может быть получен обезвоживанием своего гидрата при 2750 из солей

 

9

сурьмяной кислоты (К1=4 10-5) производные К и Pb находят применение в керамической промышленности. Образованием трудно растворимого Na[Sb(OH)4] пользуется в аналитической химии для открытия натрия. Результаты рентгеновского анализа кристаллов этой соли показывают, что ион [Sb(OH6)] имеет форму октаэдра с атомом Sb в центре [d(SbO)=1.97A] . Отвечающие окислам сернистые соединения сурьмы могут быть получены как непосредственным взаимодействием Sb с серой при нагревании, так и путем обменного разложения в растворе. Полученное сухим путем (а также природное) Sb2S2 представляет собой серо-черное кристаллическое вещество. Из растворов Sb2S2 и Sb2S5 выделяется в виде оранжево-красных порошков. Сульфиды сурьмы не растворимы в воде и разбавленных кислотах (не являющихся одновременно окислителями). В химическом отношении сульфиды Sb проявляют большое сходство с окислами сурьмы. Подобно тому, как окислы Sb при взаимодействии со щелочами дают соли кислот Н2ЭО3 или Н2ЭО4 , сульфиды их образуют с растворимыми сернистыми металлами соли соответствующих тио кислот (т.е. кислот, в которых кислород замещен на серу), например по реакциям:

3 (NH4)2S+Sb2S3=2(NH4)3SbS3 и 3(NH4)S+SbS5=2(NH4)3SbS4

    Соли тиосурьмяностой ( H2SbS3) и тиосурьмовой (H3SbS4) кислот устойчивы и в свободном состоянии и в растворе. Окрашены они, как правило, в желтый или красный цвет. Производные Na, K и NH4 в воде растворимы хорошо, большинство остальных – трудно. В противоположность своим солям свободные тиокислоты неустойчивы и легко разлагаются на соответствующий сульфид и сероводород, например по схемам:

2 H3SbS3=Sb2S3¯+3H2S и 2H3SbS4=Sb2S5¯+3H2S,  Поэтому при подкислении раствора тиосоли отвечающий ей сульфид выпадает в осадок образование и распад тиопроизводных рассматриваемых элементов имеют боль-

 

10

шое значение для качественного химического анализа.

    Галоидные соединения сурьмы легко образуются при непосредственном взаимодействии элементов. Для характеристики сравнительной энергичности протекания реакции сопоставим теплоты образования солей трёхвалентной сурьмы.

Соль                                 SbF3 SbCl3 SbBr3 SbJ3

Теплота образования (ккал / моль) 217 91   59 23

    Галогениды ЭГ3 имеют пространственную структуру треугольной пирамиды с атомом Э в вершине, а из представителей типа ЭГ5 получены лишь SbF5 и SbCl5 . Практически приходится иметь дело с SbCl3 , который представляет собой бесцветные кристаллы, хорошо растворимые в воде, но при взаимодействии с ней подвергаются сильному гидролизу. С хлоридами некоторых одновалентных металлов галогениды сурьмы способны образовывать комплексные соединения типов M[SbCl4] , M2[SbCl5] и M2(SbCl6] . Получение SbCl3 ( t плав.730, t кип.2230) удобно вести растворением мелко растертой Sb2S3 в горячей концентрированной HCl . Взаимодействие SbCl3 с концентрированной серной кислотой гладко идёт по уравнению:

             2SbCl3+3H2SO4=Sb2(SO4)3+6HCl

    П ятихлористая сурьма может быть получена непосредственным взаимодействием SbCl3 с хлором:

                       SbCl3+Cl2=SbCl5+16 ккал.

Она представляет с собой бесцветную жидкость ( t плав 40, t кип 1400 с частичным отщеплением хлора), под уменьшенным давлением перегоняющуюся без разложения. Будучи хлорангидридом сурьмяной кислоты пятихлористая сурьма легко разлагается водой по схеме:

                       SbCl5+4H2O=H3SbO4+5HCl .

Реакция эта (во избежания восстановления сурьмы проводимая водой, насыщенной хлором) является удобным методом получения чистой сурьмяной кислоты. В качестве легко отдающего хлор вещества SbCl5 находит применение

11

при органических синтезах. При смешении бесцветных SbCl3 и SbCl5 образуется темно-коричневая жидкость, в которой, по-видимому, имеет место равновесие:

                       SbCl3+SbCl5 Û SbCl4 .

В свободном состоянии хлорид четырёхвалентной сурьмы неполучен, однако при добавлении к содержащей его жидкости RbCl или CsCl выделяются темно-фиолетовые кристаллы отвечающих ему комплексных солей типа M2(SbCl6) . Получен также комплекс состава Rb2(SbBr6), производящийся от неизвестной в свободном состоянии SbBr4 . В растворе соли эти весьма неустойчивы и легко распадаются на соответствующие производные трёх и пятивалентной сурьмы.

    Фториды сурьмы бесцветны. SbF3 – при обычных условиях твёрдое вещество, температура плавления которого 2920С, а температура кипения 3190С. А SbF5 при обычных условиях жидкость, которая плавится при +70 и кипит при +1500.

    Бромиды и иодиды Sb представляют собой кристаллические вещества. SbBr3 – бесцветное вещество с температурой плавления 970С и кипения 2800С, а SbJ3 вещество красного цвета, кипит при температуре 1670С и плавится при 400С. Для SbJ3 кроме приведённой известна и менее устойчивая жёлтая модификация. Подобно фторидам и хлоридам рассматриваемые соединения способны образовывать комплексы с соответствующими солями одновалентных металлов, например M(SbJ4) . Водой бромиды и ийониды сурьмы разлагаются аналогично хлоридам. Бромиды ( SbBr5) и иониды ( SbJ5 ) в свободном состоянии не получены. В виде комплексных солей типа M(SbBr6) (и отвечающей им свободной кислоты состава HSbBr6 3H2O ) известен бромид пятивалентной сурьмы. Для всех рассматриваемых выше галогенидов сурьмы характерна склонность к реакциям присоединения. Проявляется она по отношению к самым разнообразным веществам. Например, известны продукты состава

 

12

SbCl5 NOCl ; SbCl5  POCl3 ; SbCl5 2JCl и т.д. Некоторые из этих продуктов присоединения весьма устойчивы. Например, соединения состава SbCl5 6NH3 может быть даже возогнана без разложения. Как было установлено Б.Н. Меншуткиным (1909г), SbCl3 и SbBr3 легко образуют продукты присоединения с бензолом и другими ароматическими углеводородами.

    Для сурьмы известны соответствующие солям антимонита тиосоединения: красно-коричневый хлористый тиоантимонин. Это очень устойчивое по отношению к воде вещество, может быть получена действием газообразного сероводорода на галогенид сурьмы, например по реакции:

                SbCl3+H2S=SbSCl+2HCl .

Сероводород в этом случае реагирует аналогично воде. Подобным же образом при взаимодействии SbCl5 и H2S получается бесцветный тиохлорид SbSCl3 . Образование нитридов для сурьмы не характерно. Соединения этого типа образуются, по-видимому, при взаимодействии галогенидов сурьмы с раствором KNH2 в жидком аммиаке, но являются весьма неустойчивыми.

13



2019-10-11 214 Обсуждений (0)
ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ 0.00 из 5.00 0 оценок









Обсуждение в статье: ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (214)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)