Мегаобучалка Главная | О нас | Обратная связь


Основные виды энергии и их использование



2019-12-29 303 Обсуждений (0)
Основные виды энергии и их использование 0.00 из 5.00 0 оценок




Энергия - всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое - действие, деятельность) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую.

Согласно представлениям физической науки, энергия - это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.

Если энергия - результат изменения состояния движения материальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия - результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия - проявляется при взаимодействии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и технологических.

Тепловая энергия - энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия - энергия движущихся по электрической цепи электронов (электрического тока).

Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.

Магнитная энергия - энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой. Электромагнитная энергия - это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии - атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия - энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли - энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира - гравитационную, энергию взаимодействия тел - механическую, энергию молекулярных взаимодействий - тепловую, энергию атомных взаимодействий - химическую, энергию излучения - электромагнитную, энергию, заключенную в ядрах атомов - ядерную.

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения, т.е. теплоту.

Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию снова теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую, как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.

Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.

Развитие естествознания на протяжении жизни человечества неопровержимо доказало, какие бы новые виды энергии ни открывались, вскоре обнаруживалось одно великое правило. Сумма всех видов энергии оставалась постоянной, что, в конечном счете, привело к утверждению: энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой.

В современной науке и практике эта схема настолько полезна, что способна предсказывать появление новых видов энергии.

Если будет обнаружено изменение энергии, которая не входит в список известных в настоящее время видов энергии, если выяснится, что энергия исчезает или появляется из ничего, то будет сначала «придуман», а затем найден новый вид энергии, который учтет это отклонение от постоянства энергии, т.е. закона сохранения энергии.

Закон сохранения энергии нашел подтверждение в различных областях - от механики Ньютона до ядерной физики. Причем закон сохранения энергии - это не только плод воображения или обобщения экспериментов.

Общая характеристика современного энергетического производства.

Энергетика - область общественного производства, охватывающая добычу энергетических ресурсов, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Энергосистема - совокупность энергетических ресурсов; всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

В энергосистему входят:

- электроэнергетическая система;

- система нефте- и газоснабжения;

- система угольной промышленности;

- ядерная энергетика;

- нетрадиционная энергетика.

Электроэнергетическая система - совокупность взаимосвязанных единством схем и режимов оборудования и установок по производству, преобразованию и доставке конечным потребителям электрической энергии. Электроэнергетическая система включает в себя электрические станции подстанции, линии электропередачи, центры потребления электрической энергии.

Энергетика - одна из форм природопользования. В перспективе, с точки зрения технологии, технически возможный объем получаемой энергии практически неограничен, однако энергетика имеет существенные ограничения по термодинамическим (тепловым) лимитам биосферы. Размеры этих ограничений близки к количеству энергии, усваиваемой живыми организмами биосферы в совокупности с другими энергетическим процессами, идущими на поверхности Земли. Увеличение этих количеств энергии, вероятно, катастрофично или, во всяком случае, кризисно отразится на биосфере.

Наиболее часто в современной энергетике выделяют традиционную энергетику, основанную на использовании органического и ядерного топлива, и нетрадиционную энергетику, основанную на использовании возобновляемых и неисчерпаемых источников энергии.

Список литературы

1. Карпенков С.Х. Концепции современного естествознания: Учебник для вузов. – М.: Академический Проект, 2001.

2. Скопин А.Ю. Концепции современного естествознания: Учебник. – М: ТК Велби, Изд-во Проспект, 2003.

3. Рузавин Г.И. Концепции современного естествознания. Курс лекций. – М.: Проект, 2002.

4. Найдыш В.М. Концепции современного естествознания: Учебное пособие. - М.: Гардарики, 2002.

5. Соломатин В.А. История и концепции современного естествознания: Учебник для вузов. – М.: ПЕР СЭ, 2002.

 

 



2019-12-29 303 Обсуждений (0)
Основные виды энергии и их использование 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные виды энергии и их использование

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (303)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)