Мегаобучалка Главная | О нас | Обратная связь


Формы представления, методы оценки и способы передачи информации



2019-12-29 217 Обсуждений (0)
Формы представления, методы оценки и способы передачи информации 0.00 из 5.00 0 оценок




Анализируя информацию, мы сталкиваемся с необходимостью оценки качества и определения количества получения информации. При оценке информации различают три аспекта: синтаксический, семантический и прагматический.

Синтаксический аспект связан со способом представления информации вне зависимости от ее смысловых и потребительских качеств и рассматривает формы представления информации для ее передачи и хранения (в виде знаков и символов). Этот аспект необходим для измерения информации. Информацию, рассматриваемую только в синтаксическом аспекте, называют данными.

Семантический аспект передает смысловое содержание информации и соотносит ее с ранее имевшейся информацией (рис. 2).

Рис. 2. График семантической меры: SП – тезаурусная мера получателя; Icсемантическое количество информации

 

Прагматический аспект передает возможность достижения цели с учетом полученной информации.

где Р0 – вероятность достижения цели до получения информации; Р1 – вероятность достижения цели после получения информации; IПпрагматическое количество информации.

 

Определить качество информации чрезвычайно сложно, а часто и вообще невозможно. Какие-либо сведения, например исторические, могут десятилетиями считаться ненужными, но при наступлении какого-то события их ценность может резко возрасти. Определить количество информации не только нужно, но и можно. Это прежде всего необходимо для того, чтобы сравнить друг с другом массивы информации, определить, какие размеры должны иметь материальные объекты (бумага, магнитная лента и т. д.), хранящие эту информацию.

Можно выделить три основные характеристики, используемые для измерения количества и качества передачи и приема информации:

1. Частотный диапазон– чем выше частота, тем больше информации можно передать в единицу информации (рентгеновское излучение несет больше информации, чем метровый диапазон).

2. Динамический диапазон – чем шире диапазон частот, тем больше информации можно пропустить в единицу времени.

3. Уровень шума – чем меньше помех, тем больше информации можно передать без ее искажения.

Для определения количества информации необходимо найти способ представить любую ее форму (символьную, текстовую, графическую) в едином виде. Рассмотрим некоторые критерии применительно к наиболее распространенным формам информации.

Звуки. Для звуковых колебаний совпадение формы сигнала на передаче и приеме не является обязательным. Здесь важно сохранение соотношений между амплитудами частотных компонентов, из которых состоит звук.

Частотный диапазон:

– 16–20 000 Гц – различает высококлассный музыкант;

– 30–15 000 Гц – отличное (50–10 000 Гц – хорошее) воспроизведение музыки;

– 300—3400 Гц – отличное качество связи для разговора по телефону.

Динамический диапазон – логарифм отношения максимального значения средней мощности звука к средней мощности наиболее слабых звуков. Соотношение между звуками различной интенсивности измеряется в логарифмических единицах, так как человеческое ухо сравнивает не абсолютное, а относительное изменение мощности звука. Сравнивая между собой интенсивности воздействия двух звуковых колебаний, имеющих соответственно мощности Р1 (максимальное значение средней мощности звука) и Р2 (средняя мощность наиболее слабых звуков), пользуются выражениями:

Например, динамический диапазон телефонной речи составляет 43 дБ; оркестра – 56 дБ; истребителя и рок-группы – 120 дБ. Уровень шума при телефонной связи должен быть не менее чем на 34 дБ ниже средней мощности полезного сигнала. Допустимая величина помехи при музыкальной передаче должна быть снижена еще больше – до 44–47 дБ.

Изображения. Чтобы передать с помощью электромагнитных волн некоторое изображение, необходимо каждый элемент этого изображения один за другим превратить в последовательность сигналов.

Частотный диапазон можно определить, если задаться временем, за которое мы хотим передать изображение с необходимым нам качеством. Проиллюстрируем это на примере передачи фототелеграммы с помощью телеграфа. Пусть самая маленькая точка на фототелеграмме будет равна 0,25 мм, т. е. разрешающая способность составляет 4 линии на 1 мм. Тогда на стандартном листе бумаги (формат А4) размером 210 х 300 мм можно разместить: 1 мм х 1 мм = 4 х 4 = 16 точек; 210 х 300 х 16 >> 1 000 000 точек. Передавая телеграмму за 3 мин (180 с) и учитывая, что наибольшая частота сигнала возникает при последовательном чередовании самых маленьких (элементарных) белых и темных точек, получим предельную частоту (1 000 000: 180): 2 = 2780 Гц. Двойка в делителе означает, что период предельной частоты равен времени прохождения лучом двух соседних точек – светлой и темной. Самая низкая частота возникает в случае, если на фототелеграмме изображен простейший рисунок – одна половина листа белая, а другая – черная. В результате период наименьшей частоты равен времени прохождения лучом одной строки целиком. Эта наименьшая частота равна числу строк (300 х 4 = 1200), деленному на время передачи листа (180 с), т. е. 6,7 Гц.

В отличие от фототелеграфа, телевидение передает подвижные изображения и смена кадров здесь осуществляется 50 раз в секунду. Если считать, что каждый кадр телевизионного изображения – это своеобразная фототелеграмма, легко вычислить частотный диапазон телевизионного изображения. Согласно одному из стандартов, телевизионное изображение имеет 625 горизонтальных строк и размер кадра по высоте относится к размеру по ширине как 3: 4. Если каждую элементарную точку считать квадратной, то общее их число составит 625 х 625 х 3/4 = 52 х 104. Учитывая, что число кадров в секунду равно 50 и что наивысшая частота определяется чередованием черных и светлых элементарных точек, предельная частота окажется равной 52 х 104 х 50/213 х 106 Гц. Чтобы уменьшить эту весьма большую частоту, в каждом кадре передается только половина строк. Из-за инерции нашего зрения для глаза это оказывается незаметным, зато предельная частота уменьшается вдвое. Самая низкая частота, необходимая для передачи телевизионного изображения, – это частота смены кадров, равная 50 Гц. Таким образом, для передачи телевизионного изображения требуется диапазон частот от 50 Гц до 6,5 МГц.

Динамический диапазон как в фототелеграфном, так и в телевизионном изображении почти одинаков. На экране телевизора различимы 8—10 четко разделенных градаций яркости. Установлено, что человеческий глаз различает изменения яркости, если интенсивность света двух соседних ступенек различается примерно в два раза (что в логарифмическом отсчете соответствует 3 дБ). Отсюда при 8—10 градациях динамический диапазон телевизионного изображения составит 24–30 дБ. Для хорошего качества принимаемого телевизионного изображения уровень помех должен быть меньше уровня сигнала по крайней мере на 40 дБ.

Передача данных – это частный случай информации, которую принято называть дискретной. Дискретная информация в конечном счете также является цифровой, однако может иметь большее разнообразие форм записи и методов передачи.

Рассмотрим взаимосвязь между характеристиками «частотный диапазон» и «скорость передачи данных». В теории электрической связи установлены закономерности, связывающие между собой длительность импульса тока во времени и спектральный состав этого импульса. Теоретически спектр частот импульса, имеющего конечную протяженность во времени t с, бесконечен. Однако практически основная энергия спектральных компонентов сосредоточена в диапазоне частот, не превышающих значение 1/t Гц. Но 1/t – это скорость передачи бинарной информации, исчисляемая количеством бит в секунду. Таким образом, на каждый бит в секунду требуется полоса в 1 Гц.

Теперь рассмотрим динамический диапазон. При передаче бинарной информации средняя мощность сигнала неизменна. Следовательно, нет перепада уровней. Соотношение сигнал/помеха зависит от требуемой верности приема. Если при передаче бинарных сигналов допустить возможность в среднем одной ошибки на 105 бит, то при так называемом тепловом шуме соотношение сигнал/помеха должно составлять 18,8 дБ, а при одной ошибке на 106 бит – 19,7 дБ. При импульсных помехах это соотношение зависит от частоты появления импульсов, их амплитуды и других параметров и должно подсчитываться отдельно для каждого случая.

Аналоговый сигнал может быть охарактеризован тремя основными параметрами: частотным и динамическим диапазонами, соотношением «сигнал/помеха». Для дискретных сигналов достаточно ограничиться двумя параметрами: диапазоном частот, который можно заменить скоростью передачи двоичных сигналов, и соотношением «сигнал/помеха», оценку которого удобно заменить допустимой ошибкой в приеме двоичного сигнала.

Количество и качество информации. Для определения количества информации, содержащейся в сигналах, которые циркулируют в системах управления, необходимо использовать знания из теории информации и теории вероятностей.

Под информацией, согласно теории передачи сообщений, разработанной К.Шенноном, необходимо понимать устраненную неопределенность в знаниях о сигнале. В качестве оценок степени неопределенности знаний существуют следующие меры:

синтаксическая – связанная с неопределенностью, с которой можно судить о сигнале до его приема;

структурная, или логарифмическая, – характеризующая информацию по объему (мера Хартли);

вероятностная, или статистическая, – характеризующая информацию по объему и новизне (мера Шеннона).

Для систем управления мера Хартли наиболее приемлема, так как она позволяет оценить объемы циркулирующей информации и памяти, необходимой для ее хранения. В качестве меры неопределенности (энтропии) в описании сигнала до его приема принята логарифмическая мера (здесь и далее примем основание логарифма, равное двум, тогда количество информации будет измеряться в битах):

Если до получения информации о сигнале вероятность появления отдельных сообщений для наблюдателя равна:

то в этом случае источник дискретных сообщений выдает максимальное количество информации:

Количество информации, выдаваемой источником непрерывных сигналов, определяют исходя из погрешности квантования:

где δ – относительная погрешность квантования по уровню; т – число уровней.

 

В 1948 году американский инженер и математик К.Шеннон предложил формулу вычисления количества информации для событий с различными вероятностями:

где Н – количество информации; Р – количество возможных событий; xiвероятности отдельных событий; i принимает значения от 1 до К.

5



2019-12-29 217 Обсуждений (0)
Формы представления, методы оценки и способы передачи информации 0.00 из 5.00 0 оценок









Обсуждение в статье: Формы представления, методы оценки и способы передачи информации

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (217)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)