Расчет червячной передачи редуктора
Исходные данные для расчета: - вращающий момент на тихоходном валу Т2 = 801,6 Н·м = 801600 Н·мм; - частота вращения червяка n1 = 1460 об/мин; - передаточное отношение iЧ = 20. Предварительно принимаем некорригированную передачу с числом заходов червяка z1 = 2 и числом зубьев колеса
z2 = z1 · uЧ = 2 · 20 = 40 [2, с. 55]
Выбираем материал червяка и венца червячного колеса. Принимаем для червяка сталь 45 с закалкой до твердости не менее HRC 45 с последующим шлифованием [2, с. 66]. Так как к редуктору не предъявляются специальные требования, то принимаем для венца червячного колеса бронзу БрА10Ж4Н4Л (отливка в песчаную форму) [2, с. 65]. Предварительно примем скорость скольжения vS » 6,3 м/с. Тогда при длительной работе передачи допускаемое контактное напряжение [sH] = 153 МПа [2, с. 68, таблица 4.9] (с пересчетом табличных значений методом линейной интерполяции). Определяем допускаемое напряжение изгиба при нереверсивной работе
[sOF] = КFL × [sOF]’ = 0,543 × 98 = 53,5 МПа,
где КFL = 0,543 [2, с. 67] – коэффициент долговечности при длительной работе, когда число циклов нагружения зуба NS>25×107; [sOF]’ = 98 МПа [2, с. 66] – основное допускаемое напряжение изгиба для принятого материала червячного венца и способа получения отливки. Принимаем предварительно коэффициент диаметра червяка q = 8 [2, с. 55]. Принимаем предварительный коэффициент нагрузки К = 1,2 [2, с. 64]. Определяем предварительное межосевое расстояние исходя из условия контактной выносливости по формуле [2, с. 60]
Определяем модуль зацепления
мм.
Принимаем по ГОСТ 2144-76 стандартные значения модуля m = 10 мм [2, с. 56]. Определяем межосевое расстояние при стандартных значениях модуля и коэффициент диаметра червяка
мм
Рассчитываем основные размеры червяка: - делительный диаметр червяка
d1 = q × m = 8 × 10 = 80 мм; - диаметр вершин витков червяка
dа1 = d1 + 2m = 80 + 2 × 10 = 100 мм;
- диаметр впадин витков червяка
df1 = d1 – 2,4 × m = 80 – 2,4 × 10 = 56 мм;
- длина нарезанной части шлифованного червяка
b1 ³ (11 + 0,06×z2) × m + 25 = (11 + 0,06×40) × 10 + 25 = 159 мм
принимаем b1 = 160 мм - делительный угол подъема червяка при z1 = 2 и q = 8
g = 14°2’ [2, с. 57, таблица 4.3].
Рассчитываем основные размеры червячного колеса: - делительный диаметр червячного колеса
d2 = z2 × m = 40 × 10 = 400 мм;
- диаметр вершин зубьев червячного колеса
dа2 = d2 + 2 × m = 400 + 2 × 10 = 420 мм;
- диаметр впадин зубьев червячного колеса
df2 = d2 - 2,4 × m = 400 – 2,4 × 10 = 376 мм;
- наибольший диаметр червячного колеса
мм;
- ширина венца червячного колеса
b2 = 0,75 × dа1 = 0,75 × 100 = 75 мм.
Определяем окружную скорость червяка
м/с.
Определяем скорость скольжения
м/с.
Так как фактическая скорость скольжения vS = 6,3 м/с не отличается от принятой на этапе предварительного расчета, то допускаемые напряжения не корректируем. Определяем точный КПД редуктора с учетом потерь в опорах, потерь на разбрызгивание и перемешивания масла
где r’ = 1°53’ [2, с. 59, таблица 4.4] – приведенный угол трения. Принимаем седьмую степень точности передачи и определяем коэффициент динамичности КV = 1,4 [2, с. 65, таблица 4.7]. Определяем коэффициент неравномерности распределения нагрузки
,
где Q = 57 [2, с. 64] – коэффициент деформации червяка при z1 = 2 и q = 8; х = 0,6 [2, с. 65] – вспомогательный коэффициент при незначительных колебаниях нагрузки. Рассчитываем фактический коэффициент нагрузки
К = Кb × КV = 1,14 × 1,4 = 1,596
Определяем фактическое контактное напряжение на активных поверхностях зубьев червячного колеса
МПа
Результат расчета следует признать удовлетворительным, так как фактическое контактное напряжение sH = 152 МПа меньше допускаемого [sH] = 153 МПа. Осуществляем проверку прочности зубьев червячного колеса на изгиб. Рассчитываем эквивалентное число зубьев .
Определяем коэффициент формы зуба YF = 2,22 [2, с. 63, таблица 4.5] для эквивалентного числа зубьев zV = 44. Определяем напряжение изгиба
МПа
Результат расчета следует признать удовлетворительным, так как фактическое изгибное напряжение sF = 11,3 МПа не превышает допускаемого [sOF] = 53,5 МПа. Определяем нагрузки, действующие на валы. Окружное усилие на колесе Ft2 и осевое на червяке Fа1
Н
Радиальное усилие на колесе и червяке
Н
где α = 20º – угол зацепления. Окружное усилие на червяке Ft1 и осевое на колеса Fа2
Н
Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (197)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |