Мегаобучалка Главная | О нас | Обратная связь


Нахождение прогнозных значений методом наименьших квадратов



2019-12-29 574 Обсуждений (0)
Нахождение прогнозных значений методом наименьших квадратов 0.00 из 5.00 0 оценок




демографический прогноз население численность

Сущность метода наименьших квадратов состоит в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами. Расчетные величины находятся по подобранному уравнению – уравнению регрессии.

Чем меньше расстояние между фактическими значениями и расчетными, тем более точен прогноз, построенный на основе уравнения регрессии. Теоретический анализ сущности изучаемого явления, изменение которого отображается временным рядом, служит основой для выбора кривой. Иногда принимаются во внимание соображения о характере роста уровней ряда. Для нахождения прогнозных значений численности населения часто предполагается, что рост идет в геометрической прогрессии, и тогда сглаживание производится по показательной функции.

 

 (4)

 

где - численность населения в прогнозный период; - численность населения в период, предшествующий прогнозному; е - основные натурального логарифма; k - общий коэффициент прироста населения, выраженный в долях единиц, рассчитанный по формуле:  (5)

где M - число родившихся за период; N – число умерших за период; П- число прибывших за период; В – число выбывших за период; S – средняя численность населения за период; t- период, на который разрабатывается прогноз.

Согласно имеющимся данным, численность населения Оренбургской области на 1 января 2008 года составила 2 119 003 чел., на 1 января 2009 – 2 111 531 чел., за 2008 год родилось 26 947 чел., умерло 30 904 чел., 25 570 чел. прибыло и 29 085 чел. выбыло. Рассчитаем численность населения в 2010-2012 гг. при условии, что коэффициент общего прироста населения ( ) останется неизменным на всем протяжении прогнозных лет:


 

 чел.

 чел.

чел.

 

Сглаживание временных рядов методом наименьших квадратов служит для отражения закономерности развития изучаемого явления. В аналитическом выражении тренда время рассматривается как независимая переменная, а уровни ряда выступают как функция этой независимой переменной. Ясно, что развитие явления зависит не от того, сколько лет прошло с отправного момента, а от того, какие факторы влияли на его развитие, в каком направлении и с какой интенсивностью. Развитие явления во времени выступает как результат действия этих факторов.

Правильно установить тип кривой, тип аналитической зависимости от времени – одна из самых трудных задач предпрогнозного анализа.

Подбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки, вычисляемой по формуле:

 

 (6)

 

где – фактические значения ряда динамики;  – расчетные (сглаженные) значения ряда динамики; n – число уровней временного ряда; р – число параметров, определяемых в формулах, описывающих тренд.

С помощью программы Excel проверим предположение о том, что изменение численности населения в Оренбургской области, хорошо апроксимируется экспоненциальной линией тренда.


 

Рис. 1. Динамика численности населения в Оренбургской области с экспоненциальной линией тренда.

 

Видно, что разница между фактическими и сглаженными значениями данного ряда очень велика. Невысокий коэффициент достоверности аппроксимации также подтверждает, что использовать данный тип тренда нецелесообразно.

Наибольшее приближение к фактическим уровням данного динамического ряда дает функция полинома второй степени.

 

Рис. 2. Динамика численности населения в Оренбургской области с полиномиальной линией тренда.


 

При использовании уравнения полинома третьей степени, коэффициент аппроксимации увеличивается до 0,97, но при этом усложняется и сама модель, что может отрицательно сказаться на ее прогностических возможностях.

Уравнение регрессии примет вид:

 

(7)

 

- выровненные, т.е. лишенные колебаний, уровни тренда для лет с номером i; а - это средний (выровненный) уровень тренда на момент или период, принятый за начало отсчета времени, т.е. t = 0; b - это средний за весь период среднегодовой прирост, который изменяется равномерно со средним ускорением, равным 2с; c - константа, главный параметр параболы II порядка.

Параметры a , b и c оцениваются методом наименьших квадратов и отвечают принципу максимального правдоподобия: сумма квадратов отклонений фактических уровней от тренда (от выровненных по уравнению тренда уровней) должна быть минимальной для данного типа уравнения.

На диаграмме уравнение тренда имеет вид: ,где =0 в 1990г.

При этом нумерация периодов начинается с t=1. Однако рациональнее начало отсчета времени перенести в середину ряда, т.е. при нечетном п - на период (момент) с номером (п +1 )/2, а при четном числе уровней ряда - на середину между периодом с номером n /2 и (n/2)+1. Расчет параметров тренда при переносе отсчета времени на середину ряда приведен в приложении 3. Тогда уравнение тренда принимает вид:  , где =0,5 в 2000г.

За период 1990-2009г показатель численности населения в Оренбургской области убывал в номинальной оценке ускоренно, со средним ускорением человек за год; средняя убыль населения за весь период составила 3 087 человек; средний уровень численности населения на середину периода был равен 22 084 35 чел.

Для оценки надежности тренда необходимо оценить надежность его главного параметра – ускорения. Средняя ошибка репрезентативности выборочной оценки параметра с вычисляется по формуле:

 

(8)

 

Где S ( t ) – оценка генерального показателя колеблемости, учитывающая потерю степеней свободы и определяемая по формуле 6.

Используя данные приложения 3, найдем искомые величины:

 

 

Отношение параметра с (половина ускорения) к его средней ошибке - это t-критерий Стьюдента:

Табличное значение критерия Стъюдента  Фактическая величина критерия больше табличного, следовательно, вероятность нулевой гипотезы (о равенстве параметра с нулю) чрезвычайно мала. Достоверно известно, что тренд существовал, и что численность населения Оренбургской области снижалась не случайно.

Прогноз по этой модели заключается в подстановке в уравнение тренда номера периода, который прогнозируется. Для 2010 года период времени t = 10,5, прогнозное значение составит:

 

2010= =2 069 907 чел.


 

Полученное прогнозное значение является точечным и не учитывает колеблемость уровней показателя.

При прогнозе с учетом случайной колеблемости учитывается как вызванная колеблемостью ошибка репрезентативности выборочной оценки тренда, так и колебания уровней в отдельные периоды (моменты) относительно тренда.

Общая формула средней ошибки прогноза положения параболического тренда на период с номером  от середины базы расчета тренда имеет вид:

 

(9)

 

Средняя ошибка тренда на 2010 год равна:

 

 

Вероятность того, что фактическая ошибка не превысит одного среднего квадратического отклонения, т.е. m равна при нормальном распределении 0,68. Чтобы получить доверительный интервал прогноза линии тренда с большей вероятностью, например с вероятностью 0,95,среднюю ошибку нужно умножить на величину t-критерия Стъюдента для вероятности 0,95 и n - p степеней свободы.

Получаем вероятную ошибку:

 

 

с вероятностью 95% можно утверждать, что тренд численности населения в Оренбургской области в 2010 году проходит в границах 2 069 907±13 307 или от 2 056 600 до 2 083 214 человек.

Определив ошибку репрезентативности выборочной оценки тренда, и колебания уровней в отдельные периоды (моменты) относительно тренда, получаем единую формулу средней ошибки прогноза конкретного отдельного уровня:

 

 (10)

 

Для искомого прогнозного значения: 11 286 .

Таким образом, для прогнозного значения показателя численности населения на 1 января 2010 года определены границы доверительного интервала 2 046 096 – 2 093 718 человек.

Аналогично рассчитываем прогнозные значения на 2011-2012 годы:

 

2011=2 045 646 чел.

 

Доверительный интервал: (2 020 126; 2 071 166).

 

2012=2 019 459 чел.

 

Доверительный интервал: (1 991 780; 2 047 138)

Средняя относительная ошибка , что свидетельствует о высокой точности прогноза.

Расчет прогнозных значений для других показателей приведен в приложении 3, сведем полученные результаты в общую таблицу:


 

Таблица 5

Прогнозные значения абсолютных показателей родившихся и умерших, прибывших и выбывших в Оренбургской области, полученные методом наименьших квадратов.

Абсолютный показатель, человек 2006 2007 2008 Прогноз на 2009 Прогноз на 2010 Прогноз на 2011 Δ ε
Родившиеся 23335 25776 26947 29 253 31 220 33 395 0 1135 4,13
Умершие 31 583 31 000 30 904 30 190 29 392 28 470 0 1420 3,69
Абсолютный показатель, человек 2007 2008 2009 Прогноз на 2010 Прогноз на 2011 Прогноз на 2012 Δ ε
Прибывшие 31 949 25 570 28 053 29 586 31 144 33 202 0,11 3499 7,68
Выбывшие 33 225 29 085 25 603 24 352 22 589 20 826 0 2437 5,17

 

Величины относительной ошибки свидетельствуют о высокой точности прогноза. По имеющимся данным видно, что при наметившихся тенденциях естественный прирост населения в прогнозируемые годы увеличится (увеличение рождаемости и снижение смертности), как и миграционный прирост.

Для сравнения полученных результатов составим сводную таблицу по всем применяемым методам:

 

 

Численность постоянного населения на 1 января, человек

 

МСС

МЭС

МНК

2007

2 125 503

2 125 503

2 125 503

2008

2 119 003

2 119 003

2 119 003

2009

2 111 531

2 111 531

2 111 531

Прогноз

2010

2 116 188

2 164 883

2 069 907

2011

2 117 127

2 045 646

2012

2 115 261

2 019 459

Ср. абсолют. оценка

299

-6064

0,38

Ср. квадрат. оценка

1 478

33749

8628

Ср. относит. ошибка

0,05

1,36

0,017

 

Число родившихся, чел.

Число умерших, чел.

 

МСС МЭС

МНК

МСС

МЭС

МНК

2 006

23335

23335

23335

31 583

31 583

31 583

2 007

25776

25776

25776

31 000

31 000

31 000

2 008

26947

26947

26947

30 904

30 904

30 904

Прогноз

2 009

25 743

23 915

29 253

31 130

30 754

30 190

2 010

25 754

31 220

31 087 29 392

2 011

26 125

33 395

31 026 28 470

Ср. абсолют. оценка

-85

-135

0

32

64

0

Ср. квадрат. оценка

594

3 275

1135

795

2 571

1420

Ср. относит. ошибка

2

9,94

4,13

2,02

8,14

3,69

 

Число прибывших, человек

Число выбывших, человек

 

МСС

МЭС

МНК

МСС

МЭС

МНК

2007

31 949

31 949

31 949

33 225

33 225

33 225

2008

25 570

25 570

25 570

29 085

29 085

29 085

2009

28 053

28 053

28 053

25 603

25 603

25 603

Прогноз

2010

29 352

37 366

29 586

28 144

36311

24 352

2011

28 091

31 144

28 457 22 589

2012

28 078

33 202

27 506 20 826

Ср. абсолют. оценка

11

-3539

0,11

32

-2070

0

Ср. квадрат. оценка

2 177

15857

3499

1 161

8458

2437

Ср. относит. ошибка

5

35,27

7,68

2

20,04

5,17
                   

 

Как видно из таблицы, значения средней квадратической оценки средней относительной ошибки у показателей минимальны для метода скользящей средней, и в целом данный метод дает хорошие результаты при прогнозировании демографических процессов. Кроме того, метод прост в использовании, что открывает широкие возможности для его применения. Метод наименьших квадратов более сложен в работе, но позволяет получить также достоверные результаты при условии подбора вида линии тренда, хорошо аппроксимирующей исходный динамический ряд.

Применение метода экспоненциального сглаживания целесообразно только при условии использования среднего уровня ряда в качестве начального значения экспоненциальной взвешенной. Но и в этом случае, полученные результаты являются самыми ненадежными по сравнению с прогнозированием другими методами.

Следует отметить, что прогнозирование методами экстраполяции основывается на использовании простого методологического аппарата и часто используется для получения будущих оценок социально-экономических процессов. Оправдано их использование и в частности при построении демографических прогнозов, поскольку процессы естественного и миграционного движения достаточно инерционны и не подвержены резким скачкам в уровнях.


 

Заключение

 

В соответствии с поставленными задачами в данной работе были исследованы 4 группы методов, используемых при прогнозировании демографических процессов:

1) методы экстраполяции;

2) экономико-математические методы, позволяющие разработать многофакторные динамические модели;

3) методы передвижки возрастов и когорт;

4) методы экспертных оценок.

 Опираясь на имеющиеся в распоряжении данные, для практической части работы, была выбрана первая группа методов. В результате чего были построены прогнозные оценки показателей, характеризующих естественное и миграционное движения населения в Оренбургской области, с помощью трех методов экстраполяции:

- метод скользящей средней;

- метод экспоненциального сглаживания;

- метод наименьших квадратов.

Сравнив полученные результаты, сделаем вывод о целесообразности применения для прогнозирования метода скользящей средней и метода наименьших квадратов. Метод экспоненциального сглаживания позволил найти менее точные прогнозные оценки по сравнению с другими методами.

Метод наименьших квадратов позволил определить, что наилучшее приближение к исходным уровням временных рядов дает функция параболы II порядка для всех показателей, кроме «Числа выбывших, человек» - для него лучшей аппроксимацией является линейный тренд.

Для показателя «постоянного населения», «Число прибывших» и «Число выбывших» найдены прогнозные значения и определены границы доверительных интервалов на 2010, 2011,2012 годы.

Для показателей «Числа родившихся» и «Числа умерших» найдены прогнозные значения и определены границы доверительных интервалов на 2009, 2010,2011 годы.

Полученные абсолютные данные могут использоваться для формирования демографической политики, а также прогнозирования социально-экономических процессов.


 



2019-12-29 574 Обсуждений (0)
Нахождение прогнозных значений методом наименьших квадратов 0.00 из 5.00 0 оценок









Обсуждение в статье: Нахождение прогнозных значений методом наименьших квадратов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему стероиды повышают давление?: Основных причин три...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (574)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)