Мегаобучалка Главная | О нас | Обратная связь  


Глава 2. ЦИФРОВОЙ МИКРОСКОП И ПРИМЕНЕНИЕ ЕГО НА УРОКАХ БИОЛОГИИ




 

В современном мире цифровых технологий, оптические микроскопы считаются устаревшими, на смену им пришли цифровые аналоги. Это дает как преимущества, так и недостатки. Но, несомненно, у цифровых микроскопов больший потенциал и возможности, использовать которые теперь может любой ученик.

Микроскоп — лабораторная оптическая система для получения увеличенных изображений малых объектов с целью рассмотрения, изучения и применения на практике. Совокупность технологий изготовления и практического использования микроскопов называют микроскопией.

С помощью микроскопов определяют форму, размеры, строение и многие другие характеристики микрообъектов, а также микроструктуры макрообъектов.

История создания микроскопа в целом заняла немало времени. Постепенно развитее оптических технологий привело к появлению более качественных линз, более точных удерживающих устройств.

К концу 20 века оптические микроскопы подошли к вершине своего развития. Следующим этапом стало появление цифровых микроскопов, в которых объектив был заменен на цифровую камеру.

Собственно, главное отличие цифрового микроскопа от обычного – отсутствие окуляра, через который наблюдается объект человеческим глазом. Вместо этого установлена цифровая камера, во-первых, не дающая искажений (уменьшается кол-во линз), во-вторых, улучшается цветопередача, а так же изображения получаются в цифровом виде, что позволяет проводить дополнительную постобработку, а так же хранить огромные массивы фотографий всего лишь на одном жестком диске.



увеличительный прибор микроскоп биология

 

 

Цифровой микроскоп Digital Blue QX5 приспособлен для работы в школьных условиях. Он снабжен преобразователем визуальной информации в цифровую, обеспечивающим передачу в компьютер в реальном времени изображения микрообъекта и микропроцесса, а также их хранение, в том числе в форме цифровой видеозаписи. Микроскоп имеет простое строение, USB-интерфейс, двухуровневую подсветку. В комплекте с ним шло программное обеспечение с простым и понятным интерфейсом.

При скромных, с современной точки зрения, системных требованиях он позволяет:

Увеличивать изучаемые объекты, помещённые на предметный столик, в 10, 60 и 200 раз (переход осуществляется поворотом синего барабана)

Использовать как прозрачные, так и непрозрачные объекты, как фиксированные, так и нефиксированные

Исследовать поверхности достаточно крупных объектов, не помещающихся непосредственно на предметный столик

Фотографировать, а также производить видеосъёмку происходящего, нажимая соответствующую кнопку внутри интерфейса программы

Фиксировать наблюдаемое, не беспокоясь в этот момент о его сохранности – файлы автоматически оказываются на жёстком диске компьютера.

Задавать параметры съёмки, изменяя частоту кадров – от 4-х кадров в секунду до 1 в час

Производить простейшие изменения в полученных фотографиях, не выходя из программы микроскопа: наносить подписи и указатели, копировать части изображения и так далее.

Экспортировать результаты для использования в других программах:

графические файлы - в форматах *.jpg или *.bmp, а видео файлы – в формате *.avi

Собирать из полученных результатов фото - и видеосъёмки демонстрационные подборки-«диафильмы» (память программы может хранить одновременно 4 последовательности, включающих до 50 объектов каждая). Впоследствии подборку кадров, временно неиспользуемую, можно спокойно разобрать, так как графические файлы остаются на жёстком диске компьютера

Распечатывать полученный графический файл в трёх разных режимах:

9 уменьшенных изображений на листе А4, лист А4 целиком, увеличенное изображение, разбитое на 4 листа А4

Демонстрировать исследуемые объекты и все производимые с ними действия на мониторе персонального компьютера и/или на проекционном экране, если к компьютеру подключён мультимедиа проектор

Что даёт учителю и ученику цифровой микроскоп, применительно к урокам биологии?

Одна из самых больших сложностей, подстерегающих учителя биологии при проведении лабораторной работы с традиционным микроскопом, это практически отсутствующая возможность понять, что же в действительности видят его ученики. Сколько раз зовут ребята совсем не к тому, что нужно – в поле зрения либо край препарата, либо пузырёк воздуха, либо трещина…

Хорошо, если для проведения подобных обязательных по программе работ есть постоянный лаборант, либо подготовленные общественные помощники. А если Вы один - на 25 человек и 15 микроскопов? А стоящий посередине парты (один на двоих!) микроскоп нельзя сдвигать – иначе все настройки света и резкости сбиваются, при этом результаты работы (а также время и интерес) теряются.

Те же занятия проходят значительно легче и эффективнее, если проведение лабораторной работы предваряется вводным инструктажём, проведённым с помощью цифрового микроскопа.

В этом случае реально производимые и одновременно демонстрируемые через проектор действия с препаратом и получаемое при этом изображение – лучшие помощники.

Они наглядно предъявляют ученику правильный образ действия и ожидаемый результат. Резкость изображения и в компьютерном варианте микроскопа достигается с помощью поворота винтов.

Важно и то, что можно указать и подписать части препарата, собрав из этих кадров слайд-шоу.

Сделать это можно как сразу на уроке, так и в процессе подготовки к нему.

После такого вводного инструктажа проведение лабораторной работы с помощью традиционных оптических микроскопов становится легче и эффективнее.

Если у Вас нет луп, то данный микроскоп можно использовать как бинокуляр (увеличение в 10 или 60 раз). Объектами исследования являются части цветка, поверхности листьев, корневые волоски, семена или проростки. А плесени – хоть мукор, хоть пеницилл? Для членистоногих – это все их интересные части: лапки, усики, ротовые аппараты, глаза, покровы (например, чешуйки крыльев бабочек). Для хордовых – чешуя рыбы, перья птиц, шерсть, зубы, волосы, ногти, и многое-многое другое. Это далеко не полный список.

Важно и то, что очень многие из указанных объектов после исследования, организованного с помощью цифрового микроскопа, останутся живы: насекомых – взрослых или их личинок, пауков, моллюсков, червей можно наблюдать, поместив в специальные чашечки Петри (их в наборе с каждым микроскопом две + пинцет, пипетка, 2 баночки с крышечками для сбора материала). А любое комнатное растение, поднесённое в горшке на расстояние около 2-х метров к компьютеру, легко становится объектом наблюдения и исследования, не теряя при этом ни одного листочка или цветочка. Это возможно благодаря тому, что верхняя часть микроскопа снимается, и при поднесении к объекту работает как веб-камера, давая 10-кратное увеличение. Единственное неудобство состоит в том, что фокусировка при этом осуществляется только за счёт наклона и приближения-удаления.

Зато, поймав нужный угол, Вы легко выполните фотографию, не тянясь к компьютеру – прямо на части микроскопа, находящейся у Вас в руках, есть необходимая кнопка: нажали раз – получили фотографию, нажали и удерживаете – осуществляется видеосъёмка.

Качество получаемых с помощью цифрового микроскопа графических файлов

Эпидермис листа

Эпидермис листа - это покровная ткань листа, иначе ее называют кожицей. Она образована одним слоем плоских клеток, которые плотно прилегают друг к другу. Эти клетки под микроскопом кажутся светлыми, прозрачными из-за того, что значительный объем в них занимает центральная вакуоль, заполненная клеточным соком. Вакуоль оттесняет к периферии клетки ядро и все клеточные органоиды. Тем не менее, ядро хорошо видно в каждой клетке, в нем хранится вся наследственная информация. Хлоропласты в основных клетках эпидермиса листа обычно отсутствуют. Среди основных клеток кожицы выделяются клетки другой формы, они лежат попарно, образуя устьица. Каждое устьице состоит из двух замыкающих клеток бобовидной формы, и между этими клетками имеется щель в виде линзы. Эта щель называется устьичной щелью и представляет собой межклеточное пространство. Форма устьичной щели и ее размер могут изменяться в зависимости от того, насколько плотно прилегают друг к другу замыкающие устьичные клетки. В замыкающих устьичных клетках можно увидеть ядро, и в них всегда присутствуют хлоропласты, осуществляющие процесс фотосинтеза. С внешней поверхности каждая клетка кожицы листа покрыта особым защитным слоем - кутикулой. Кутикула может быть толстой и жесткой. В ее состав могут входить жироподобные вещества и воск. Кутикула должна быть прозрачной, чтобы не препятствовать проникновению солнечного света к внутренним тканям листа, где активно проходит процесс фотосинтеза. Эпидермис выполняет очень важную роль в жизнедеятельности листьев. Он защищает лист от повреждений и высыхания. Через открытые устьичные щели внутрь листа поступает воздух, он необходим для дыхания и фотосинтеза. Также через открытые устьичные щели выделяются кислород, который образуется в процессе фотосинтеза, и пары воды. Если растение испытывает недостаток воды, например, в жаркую сухую погоду, то устьичные щели закрываются. Так растение защищает себя от излишней потери воды. Ночью устьица так же обычно бывают закрыты.

Зародыш семени

Зародыш - это самая главная часть семени. Фактически - это микроскопическое растение, у которого есть все органы: зародышевый побег с зародышевым стеблем, зародышевыми листьями и зародышевой верхушечной почкой, а так же зародышевый корень. На препарате зародышевый побег направлен в одну сторону, зародышевый корень ориентирован строго противоположно. На участке между зародышевой почкой, прикрытой зародышевыми листьями, и корнем находится зародышевый стебель. Непосредственно к зародышу с одной стороны примыкает семядоля. Ее клетки по интенсивности окрашивания такие же, как клетки стебля. Семядоля - это особый лист зародыша. Семядоли защищают зародышевую почку, первыми появляясь на поверхности почвы. На препарате видно одну семядолю, следовательно, данный зародыш относится к однодольным растениям. Зародыш семени лучше рассматривать под малым увеличением микроскопа, чтобы он смог поместиться в поле зрения микроскопа целиком.

Кожица лука

Луковица - это видоизмененный побег с коротким плоским стеблем (донцем) и мясистыми сочными листьями чешуями. Поэтому кожица лука представляет собой эпидермис листа, который развивается в темноте без доступа света, в результате чего в клетках кожицы лука отсутствуют хлоропласты. Вместо хлоропластов в этих клетках имеются бесцветные пластиды - лейкопласты. Клетки кожицы лука имеют удлиненную форму, близкую прямоугольной. Границы клеток хорошо видны, они представлены прозрачными оболочками, достаточно твердыми, чтобы поддерживать форму клеток. По клеточным оболочкам возможна передача воды от клетки к клетке, а так же растворенных в воде веществ. Клетки выглядят светлыми прозрачными, благодаря тому, что значительный их объем занимает большая центральная вакуоль с клеточным соком. Вакуоль - это место запаса воды в клетке. В ней в растворенном виде могут находиться запасные питательные вещества, пигменты, растворы органических кислот, минеральных солей и разнообразные продукты жизнедеятельности растительной клетки. Вакуоль оттесняет ядро и цитоплазму к периферии клетки, при этом цитоплазма разделяется на отдельные тяжи. Тяжи цитоплазмы выявляются под микроскопом при большом увеличении в виде узких лент, отходящих лучами от ядра. В тяжах цитоплазмы проявляется зернистая структурированность, что связано с наличием в цитоплазме разнообразных органелл.

Корневой чехлик

Верхушка корня вытянута в конус и направлена к центру Земли. Она защищена корневым чехликом, который представляет собой колпачок на верхушке корня. Он состоит из нескольких слоев клеток. Эти клетки играют очень важную роль при углублении корня в почву. С поверхности чехлика клетки слущиваются, при этом выделяется слизь, которая смазывает почву и обеспечивает скольжение корня в глубину. С внутренней поверхности корневого чехлика идет постоянное пополнение клеток. Своей внутренней поверхностью корневой чехлик примыкает к самой верхушечной части корня, где постоянно происходит деление клеток, то есть находится образовательная ткань. За счет образовательной ткани верхушки корня и происходит постоянное пополнение клеток корневого чехлика. На препарате зона корневого чехлика хорошо отличается от верхушки корня. Корневой чехлик в виде короны обрамляет образовательную зону корня. Клетки в нем лежат более рыхло, чем на верхушке корпя. Наружный край неровный за счет слушивания клеток. Толщина слоя корневого чехлика в самом объемном месте - несколько десятков клеток.

Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Читайте также:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (135)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7