Мегаобучалка Главная | О нас | Обратная связь


Контроль точности и уточнение приближенного решения в рамках прямого метода



2019-12-29 196 Обсуждений (0)
Контроль точности и уточнение приближенного решения в рамках прямого метода 0.00 из 5.00 0 оценок




Теоретический обзор

 

Прямые методы

математический модель итерация погрешность

Все методы решения линейных алгебраических задач можно разбить на два класса: прямые и итерационные. Прямые методы – это такие методы, которые приводят к решению за конечное число арифметических операций. Если операции реализуются точно, то и решение также будет точным (в связи с чем к классу прямых методов применяют название точные методы). Итерационные методы – это методы в которых точное решение может быть получено лишь в результате бесконечного повторения единообразных действий.

Эффективность способов решения системы

 

 или

 

иначе, векторно-матричных уравнений Ах=f, где f=(f1, f2, …,fn)T – вектор свободных членов и

х=( х1, х2, …,хn)T – вектор неизвестных, а  – вещественная n×n-матрица коэффициентов данной системы, во многом зависит от структуры и свойств матрицы А : размера, обусловленности, симметричности, заполненности и др.

Так размерность системы (т.е число n) является главным фактором, заставляющим вычислителей отвернуться от весьма привлекательных в теоретическом плане и приемлемых на практике при небольших n формул Крамера.


Метод Гаусса

 

Описание метода

Рассмотрим один из самых распространенных методов решения СЛАУ – метод Гаусса. Этот метод (который называют также методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.

Вычисления с помощью метода Гаусса состоят из двух основных этапов, называемых прямым ходом и обратным ходом. Прямой ход метода Гаусса заключается в последовательном исключении неизвестных из системы (1):

 

 

для преобразования её к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода.

 

Алгоритм.

Апостериорная оценка погрешности.

Пример

Метод вращений линейных систем

Описание метода.

Как и в методе Гаусса, цель прямого хода преобразований в этом методе – приведение системы к треугольному виду последовательным обнулением поддиагональных элементов сначала первого столбца, затем второго и т.д.

 

Пусть с1 и s1 – некоторые отличные от нуля числа. Умножим первое уравнение исходной системы (1) на с1, второе на s1 и сложим их; полученным уравнением заменим первое уравнение системы. Затем первое уравнение исходной системы умножаем на –s1, второе – на c1 и результатом их сложения заменим второе уравнение. Таким образом, первые два уравнения (1) заменяются уравнениями

 

 

 

Отсюда .

 

Эти числа можно интерпретировать как косинус и синус некоторого угла (отсюда название метод вращений, каждый шаг такого преобразования можно рассматривать как вращение расширенной матрицы системы в плоскости обнуляемого индекса).

В результате преобразований получим систему


 

где

 

 

Далее первое уравнение системы заменяется новым, полученным сложением результатов умножения первого и третьего уравнений соотведлтственно на

 

 

а третье – уравнением, полученным при сложении результатов умножения тех же уравнений соответственно на –s2 и с2. Получим систему

 

где

 

 

Выполнив преобразование m-1 раз, придем к системе

 

 

Вид полученной системы такой же, как после первого этапа преобразований методом Гаусса. Эта система обладает следующим свойством: длина любого вектора-столбца (эвклидова норма) расширенной матрицы остается такой же, как у исходной матрицы. Следовательно, при выполнении преобразований не наблюдается рост элементов.

Далее по этому же алгоритму преобразуется матрица

 

 

и т.д.

В результате m-1 этапов прямого хода система будет приведена к треугольному виду.


 

Нахождение неизвестных не отличается от обратного хода метода Гаусса.

Треугольная, точнее, трапециевидная структура последней системы позволяет последовательно одно за другим вычислять значения неизвестных, начиная с последнего:

 

 

Контроль точности и уточнение приближенного решения в рамках прямого метода

Прямые методы часто приводят к точному решению СЛАУ при точном выполнении предусматриваемых соответствующими алгоритмами арифметических операций (без округлений).

Реальные же вычисления базируются на арифметике машинных (т.е. усеченных до определенного количества разрядов) чисел. Как отражается на результате решения системы подмена арифметики действительных чисел машинной арифметикой, зависит от самой решаемой системы, параметров применяемого компьютера и системы представления данных, способов реализации алгоритмов. В любом случае, практически вместо точного решения СЛАУ прямой метод дает приближенное решение*) (обозначим его х(0)). Подставив х(0) в выражение ξ:=f-Ax, называемое невязкой, по малости полученного вектора значения ξ(0)=f-Ax(0) можно с осторожностью судить о близости найденого решения x(0) к точному решению x. Если, напимер,

|| ξ(0)|| - недостаточно малая величина, то следует искать вектор-поправку p такой, что x(0)+р=х есть точное решение системы

 

 т.е. А(х(0)+р)=f.

 

Последнее равносильно векторно матричному уравнению

Ар = ξ(0).

Таким образом, нахождение поправки сводится к решению такой же системы, как и

 

,

 

где в качестве вектора свободных членов должен быть взят вектор невязок.

 



2019-12-29 196 Обсуждений (0)
Контроль точности и уточнение приближенного решения в рамках прямого метода 0.00 из 5.00 0 оценок









Обсуждение в статье: Контроль точности и уточнение приближенного решения в рамках прямого метода

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (196)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)