Мегаобучалка Главная | О нас | Обратная связь


Агрохимические характеристики почв



2019-12-29 194 Обсуждений (0)
Агрохимические характеристики почв 0.00 из 5.00 0 оценок




 

Проведён химический анализ почв для выявления агрохимических показателей почвы с использованием методик 2.2-2.5. Данные представлены в таблице 4.

На основе этих данных можно сделать вывод, что исследуемая почва относится к выщелоченным чернозёмам, характеризующиеся содержанием гумуса 6-8%.

В чернозёмах высока доля содержания гумуса. Известно, что гумус -это депо для тяжёлых металлов. Особенно высока комплексообразующая способность гумусовых веществ по отношению к Cu(II), Cd(II) и Pb(II).

Тяжёлые металлы вносили в почву в виде солей азотнокислого кадмия и уксуснокислого свинца, из расчета на элемент в ПДК: кадмий – 3мг/кг и свинец – 1мг/кг[4]. Данные химического анализа после эксперимента представлены в таблицах 5 и 6.

Из этих данных видно, что тяжёлые металлы оказывают значительное влияние на основные агрохимические характеристики: содержание Са2+, Мg2+, рН водной вытяжки, суммы поглощённых оснований.


Таблица 4

Агрохимические характеристики образцов почвы пригородной зоны

г. Минусинска

  Содержа-ние гумуса, % Жёсткость водной вытяжки, ммоль/100г Сумма погло-щённых основа-ний, ммоль/100г Гидролитическая кислот-ность, ммоль/100г Обменная кислот-ность, ммоль/100г рН
Значение показателя 6,5 1,68 46 0,27 0,01 7,36

 

Обменная кислотность остаётся неизменной при внесении ТМ, а гидролитическая кислотность изменяется незначительно: только при внесении ионов Pb (II) в контрольный образец почвы гидролитическая кислотность возросла на 0,19 ммоль/100 г, а в случае с Cd (II) – на 0,47 ммоль/100 г. Это указывает на вытеснение ионов Al3+, Fe3+ из почвенного поглотительного комплекса ионами Cd (II) и Pb (II) и усилением процессов гидролиза.

Известкованиеявляется эффективным приёмом в снижении содержания подвижных форм ТМ в почве, т. к. способствует их детоксикации, а высокое содержание в почвенном растворе водорастворимых органических соединений приводит к повышению миграционной способности металлов благодаря образованию устойчивых органоминеральных комплексов. В их составе металлы могут транспортироваться за пределы почвенного профиля.

Использование ацетата натрия приводит к тому, что рН среды повышается и в условиях подщелачивания ионы металлов становятся очень подвижными, при этом снижается общее количество гумуса.

Очень важной агрономической характеристикой почвы является кислотность. Как правило, чернозёмы обладают нейтральной реакцией с небольшими отклонениями в ту или другую сторону. В нашем случае обменная кислотность не изменяется и остаётся постоянной, т. к. для чернозёмов она менее характерна. Чаще всего приходится встречаться с гидролитической кислотностью, которая свойственна большинству почв. Её необходимо определять для установления дозы извести и возможности эффективного применения фосфоритной муки.

Кроме того, для характеристики почвы важно знать не только абсолютное значение кислотности, т. е. общее количество поглощённых ионов водорода, но и соотношение между ними и другими поглощёнными катионами – Са2+, Mg2+, Na+, K+ и другие. Величина степени насыщенности основаниями – важный показатель для характеристики степени кислотности почвы, её учитывают при определении нуждаемости почв в известковании.

В модельном эксперименте значение суммы поглощённых оснований в разных вариантах колеблется от 44,7 до 46,8 ммоль/100 г в сравнении с почвой – контролем, что свидетельствует о незначительной потребности почвы в известковании.

 

Таблица 5

Изменение агрохимических показателей почвы после внесения соли Pb(II) в разных концентрациях.

вариант

гумус,

%

Жёсткость, ммоль/100г

Сумма поглощённых оснований,

ммоль/100г

Гидролити-ческая кислотн., ммоль/100г

Обменная кислотн.,

ммоль/100г

ПДК (Pb(II)) = 20 мг/кг

Фон+Pb2++ биогумус

9,2

0,39

45,4

0,25

0,01

Фон+Pb2++ известь

8,1

12,35

46,4

0,25

0,01

Фон+ Pb2+ +СН3СООNa

5,9

2,34

45,4

0,29

0,01

ПДК (Pb(II)) =60 мг/кг

Фон+ Pb2+ +биогумус

9,7 0,36 46,8

<0,23

0,01

Фон+ Pb2+ + известь

8,5 1.53 46,4

<0,23

0,01

Фон+ Pb2+ +СН3СООNa

5,5 2,36 45,4

0,27

0,01

Почва – контроль

Почва

6,5 1,68 46

0,27

0,01
                 

 

Таблица 6

Изменение агрохимических показателей почвы после внесения соли Cd(II) в разных концентрациях

вариант

Гумус ,

%

Жёсткость,

ммоль/100г

Сумма поглощённых оснований, ммоль/100г Гидролити-ческая кислотн., ммоль/100г Обменная кислотн., ммоль/100г

ПДК (Cd (II)) = 20 мг/кг

Фон+ Cd2++ биогумус

8,4

0,39

45,37 0,25 0,01
Фон+ Cd 2++ известь

7,9

10,24

45,56 0,25 0,01
Фон+ Cd 2+ +СН3СООNa

4,9

2,34

44,7 0,29 0,01

ПДК (Cd (II)) =60 мг/кг

Фон+ Cd 2+ + биогумус

8,6 0,37

45,3

<0,23 0,01

Фон+ Cd 2+ + известь

8,5 2,87

46,4

<0,23 0,01

Фон+ Cd 2+ +СН3СООNa

4,7 2,41

44,76

0,27 0,01

Почва – контроль

Почва

6,5 1,68

46

0,27 0,01
               

 


3.2 Изучение подвижности соединений Pb 2+  и Cd 2+  в почвах

 

В работе решалась задача изучения степени подвижности ионов свинца (II) и кадмия (II) и, в частности, выявление доли кислоторастворимых форм ТМ в системе «почва-растение». Экспериментальные данные изучения подвижности ионов Pb (II), Cd (II) под влиянием различных концентраций их в почве и почвенном растворе в зависимости от кислотности почвы проводились с использованием солей Cd(NO3)2  и  Pb(CH3COO)2.

Ионы металлов вводили в почву в количествах, кратных 20 ПДК и 60 ПДК (ПДК Cd (II) = 3 мг/кг [18], ПДК Pb (II) = 1 мг/кг [13]) по схеме:

1. контроль (почва-фон)

2. фон + ТМ (Pb 2+ /Cd 2+) + биогумус

3. фон + ТМ (Pb 2+ /Cd 2+) +известь

4. фон + ТМ (Pb 2+ /Cd 2+) + ацетат натрия

Опыты были заложены в сосудах без дна размером 10*15*40 см.

После выращивания биокультуры в течение 30 суток почву подвергали химическому анализу на содержание валовых и подвижных форм Pb (II), Cd (II) методом атомно-абсорционной спектроскопии (методика 2.6.) с целью определения доли поглощения ТМ. Результаты представлены в таблицах 7, 8 и на диаграммах 1-4.

 

Таблица 7

Содержание валовых форм Pb (II), Cd (II), мг/кг в почве Минусинского района

Исследуемая система

С иона (валовое), мг/кг почвы, 5 н. HNO3

Pb 2+ pH Cd 2+ pH
1. почва-фон 8,69 7,36 0,323 7,36
2. почва + Ме 2+ 0,181 6,62 33,404 6,90
3. почва + Ме 2+ + СН3СOONa 1,554 9,30 15,650 9,65
4. почва + Ме 2++ биогумус 0,386 6,71 29,645 7,00
5. почва + Ме 2+ + известь 0,320 7,34 22,034 7,12

 

Таблица 8

Содержание подвижных форм Pb (II), Cd (II), мг/кг в почве Минусинского района.

Исследуемая система

С иона (подвижное), мг/кг почвы,

1 н. HNO3

1 н. СН3СOONН4

Pb 2+ Cd 2+ Pb 2+ Cd 2+
1. почва-фон 6,43 0,250 2,91 0,079
2. почва + Ме 2+ 0,183 27,755 0,097 25,128
3. почва + Ме 2+ + СН3СOONa 1,832 10,350 0,780 5,983
4. почва + Ме 2++ биогумус 0,171 9,332 0,077 8,309
5. почва + Ме 2+ + известь 0,222 19,543 0,146 7,864

 

Рис. 1. Валовое содержание кадмия (II), мг/кг


Рис.2. Валовое содержание свинца (II), мг/кг

 

Условные обозначения к рисункам 7-8:

1- почва + Ме2+

2- почва + Ме2+ + СН3СООNa

3- почва + Ме2+ + биогумус

4- почва + Ме2+ + известь

 

Рис. 3. Содержание подвижных форм кадмия в почве (экстр. 1 н. СН3СООNН4), мг/кг почвы

Рис.4.Содержание подвижных форм свинца в почве (экстр. 1 н. СН3СООNН4), мг/кг почвы

 

Условные обозначения к рисункам 1-4:

1- почва + Ме2+

2- почва + Ме2+ + СН3СООNa

3- почва + Ме2+ + биогумус

4- почва + Ме2+ + известь

 

Подходы, рекомендуемые разными авторами [13] для характеристики соединений ионов ТМ в почве с позиции их подвижности, принципиально различаются. В почвах подавляющая часть Cd(II) и Pb(II) находится в виде твёрдых соединений, которых может быть несколько. В процессе выделения фракций возможно перераспределение элементов между ними. Так, при определении содержания обменной фракции свинца следует иметь в виду, что однократной обработкой 1 н. СН3СООNH4 из почвы не удаётся экстрагировать более 50% даже щелочноземельных обменных катионов, которые, безусловно, связаны значительно слабее, чем Pb(II) [13].

Полученные результаты указывают на то, что с ростом рН среды валовое количество свинца увеличивается. При внесении Pb2+ в почвенный раствор, в количествах, кратных 60 ПДК, наибольшее количество металла закрепляется почвой в случае применения биогумуса и извести, а так же в почве – контроле. Аномально высокое значение Pb2+ с применением ацетата натрия объясняется, скорее всего, происходящим в системе процессом гидролиза, приводящему к накоплению ОН- ионов в почвенном растворе. Это продолжается до тех пор, пока в системе не установится равновесие между негидролизованными ацетат-ионами и гидроксид-ионами, появляющимися в результате гидролиза по аниону. В силу слабости уксусной кислоты как электролита (К дис = 1,74*10-5 ) глубина протекания гидролиза будет значительной, и в растворе будут накапливаться ОН- ионы. Установлено что, рН 1 н. раствора СН3СООNa равен 9,4, что вполне согласуется с полученными экспериментальными данными.

Поведение Cd (II) заметно отличается от поведения других тяжёлых металлов. Его подвижность высока во всех средах, даже при внесении извести. Повышенная подвижность кадмия, и связанная с этим меньшая защищённость растительного организма от избыточных ионов этого элемента, является одной из причин сильной его токсичности.

Прочность связывания количеств Pb (II), Cd (II) за счёт химического взаимодействия будет разной, как в силу неоднородности почвенных частиц и почвенного органического вещества, так и вследствие кооперативных эффектов (изменения прочности связи ионов в результате присоединения (или отщепления) другого иона к другой частице или функциональной группе молекулы).

Полученные данные позволили провести оценку доли различных форм соединений Pb (II), Cd (II) по подвижности в почве. Результаты представлены в таблице 9.


Таблица 9

Содержание подвижных форм ионов ТМ в почве, % района.

Исследуемая система

рН

Подвижные формы, %

Экстр.1 н. СН3СOONН4

Pb 2+ Cd 2+ Pb 2+ Cd 2+
1. почва-фон 7,36 7,36 33,50 24,45
2. почва + Ме 2+ 6,62 6,90 53,60 75,22
3. почва + Ме 2+ + СН3СOONa 9,30 9,65 50,20 38,23
4. почва + Ме 2++ биогумус 6,71 7,00 20,01 28,02
5. почва + Ме 2+ + известь 7,34 7,12 45,62 35,69

 

Исходя из этих данных, можно заключить, что с ростом содержания органического вещества в почве количество подвижных ионных форм как свинца так и кадмия в 2,7 раза уменьшается, а внесение извести практически не отражается на количестве подвижных форм свинца, тогда как доля подвижных форм кадмия уменьшается их 2 раза.

Известь является менее эффективным способом снижения подвижных форм ТМ в данном случае.

Ни одна из имеющихся в литературе методик фракционирования элементов не даёт возможности определить их истинные формы. Доступность свинца и кадмия растениям должна зависеть от способности их соединений высвобождать металл в раствор, в том числе при взаимодействии с выделяемыми корнями ионами Н+ или анионами органических кислот, которые связывают металлы в комплексы.

В кислых почвах существенная часть Pb (II), Cd (II), вплоть до 10-70 %, действительно способна обмениваться на другие ионы; в нейтральных почвах преобладают фракции, «связанные» с «оксидами Fe – Mn» и органическим веществом, а в слабощелочных и щелочных условиях свинец и кадмий распределены между «карбонатной», «органической» и «остаточной» фракциями.



2019-12-29 194 Обсуждений (0)
Агрохимические характеристики почв 0.00 из 5.00 0 оценок









Обсуждение в статье: Агрохимические характеристики почв

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (194)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)