Мегаобучалка Главная | О нас | Обратная связь


Тогда количество таких матриц вычисляется по формуле



2019-12-29 180 Обсуждений (0)
Тогда количество таких матриц вычисляется по формуле 0.00 из 5.00 0 оценок




(р-1)3р5(р+1)    (2.3)

Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что , .

При условии (2.2) не учитываются матрицы вида  с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида  с определителем обращающимся в нуль, количество которых нужно вычесть.

Докажем, что количество матриц в обоих случаях одинаково:

а)  (р-1 штук),  и . Из (2.1) получаем равенство .

а1) Пусть =0. Тогда  и . Значит элементов  всего р-1 штук, количество невырожденных матриц  - (р-1)2р(р+1). Т.к  то из выражения  получаем равенство , т.е. хотя бы один из этих элементов не равен нулю. Пусть . Из того, что  получаем . Элементом , принимающим любое значение, можем однозначно задать элемент . Поэтому количество матриц удовлетворяющих этим условиям (р-1)4×р2×(р+1) штук.

а2) Если ¹0, .Тогда  и . Значит элементов  всего р-1 штук, количество невырожденных матриц  - (р-1)2р(р+1). Т.к , то, из выражения  получаем . Пусть . Домножим равенство  ( ) на . Заменим  на  (из того, что ). Получим равенство . Вынесем  за скобки  и т.к.  делаем вывод, что . Значит и  ( ). Поэтому количество матриц удовлетворяющих этим условиям (р-1)5×р×(р+1) штук.

а3) Если ¹0,  и  получаем (р-1)4×р2×(р+1) штук матриц удовлетворяющих этим условиям (рассуждение как в пункте а1)

а4) Если ¹0, ,  и  получаем
(р-1)5×р×(р+1) штук матриц удовлетворяющих этим условиям (рассуждение как в пункте а2)

а5) Если ¹0, ,  и . Из того, что  получаем . Пусть . Равенство  ( ) умножим на  и заменим  на  ( ). Получим равенство . Вынося  за скобки ( ), замечаем, что элемент  однозначно выражается через  (  - р-1 штук). Но тогда  тоже выражается через эти элементы. Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1)штук.

 

Таким образом, общее количество матриц удовлетворяющих условию пункта а) подсчитывается по формуле
(р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах а1-а5).

б)  (р-1 штук),  ((р-1)2×р×(р+1)) штук). Т.к. , значит (2.4)

б1) Пусть =0. Тогда из (2.4) выводится равенство

   (2.5)

а из (2.5) получим . Распишем (2.5): . Т.е.  однозначно выражается через элемент , которых может быть р штук, и через элементы , , , , . Поэтому количество матриц удовлетворяющих этим условиям (р-1)4×р2×(р+1).

б2) Если ¹0, .Тогда получим опять равенство (2.5) и из него . Элементов  всего р-1 штук. Т.к , то получаем что . Пусть . Умножив равенство (2.5) на , выражая  и произведя замену  на  получим равенство . А т.к.  и  делаем вывод, что  и  выражаются через все остальные элементы матрицы. Поэтому количество матриц удовлетворяющих этим условиям
(р-1)5×р×(р+1) штук.

б3) Если ¹0,  и  получаем (р-1)4×р2×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в
пункте б1)

б4) Если ¹0, ,  и  получаем
(р-1)5×р×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в пункте б2)

б5) Пусть ¹0, ,  и . Из того, что , получаем . Пусть . Тогда преобразовывая (2.4) получаем, что  однозначно выражается через  и все остальные элементы.

Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1) штук.

 

Таким образом, общее количество матриц удовлетворяющих условию пункта б) подсчитывается по формуле
 (р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах б1-б5).

Значит формула (р-1)3р5(р+1) для случая 1) при условии (2.2) верна.

2) Пусть ,  (количество их р-1),  (количество высчитывается по формуле (1.5)) и  (по р штук). Тогда из (2.1) получаем

.

Тогда количество таких матриц вычисляется по формуле

(р-1)3р4(р+1)  (2.6)

Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что ,  и .

Но при этих условиях не учитываются матрицы вида  с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида  с определителем обращающимся в нуль, количество которых нужно вычесть.

Докажем, что количество матриц в обоих случаях одинаково:

а) ,  и . Из (2.1) получаем равенство , , а из того что  получаем что, например, элемент  однозначно выражается через элемент  (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).

б) ,  и . Из (2.1) получаем равенство , . А из  можем однозначно выразить, например, элемент  через элемент  (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).

 

3) Пусть , ,  (количество их p-1),  (количество высчитывается по формуле (1.5)) и  (по р штук).

Тогда количество таких матриц вычисляется по формуле

(р-1)[(р-1)2р(р+1)]×р×р×р            (2.7)

Этими этапами мы перебрали все случаи невырожденных матриц порядка 3. складывая формулы (2.3), (2.6) и (2.7), полученные в этапах 1), 2) и 3) получаем формулу для нахождения количества обратимых матриц порядка 3 матриц над полем Zp

(р-1)3р3(р+1)(р2+р+1) (2.8)

 

3. Общая формула для подсчета обратимых матриц над полем Zp.

Используя алгоритм, описанный в предыдущих пунктах, для выведения формулы подсчета количества обратимых матриц, можем получить частные формулы для матриц произвольных порядков.

Например:

Для матриц порядка 4:

(р-1)4р6(р+1)(р2+р+1)(р32+р+1).

Для матриц порядка 5:

(р-1)5р10(р+1)(р2+р+1)(р32+р+1)( р432+р+1), и т.д.

Анализируя полученные результаты, можем сделать выводы, что общая формула для получения количества обратимых матриц порядка n над полем Zp выглядит так:

Данную формулу тождественными преобразованиями можно привести к виду:

§3. Обратимые матрицы над кольцом Zn  

 

Из теоремы доказанной в § 1 следует, что для определителей матриц A и B выполняется равенство |A·B|=|A|·|B|.

Для обратимых матриц A и B следует A·B=E.Следовательно |A·B|=|A|·|B|=|E|=1.

Таким образом, получаем: определитель обратимой матрицы является обратимым элементом.

Попытаемся сосчитать количество обратимых матриц над некоторыми кольцами вычетов по составному модулю.

 

Обратимые матрицы над Z4.

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Всего различных матриц второго порядка над Z4: 44=256.

В Z 4 обратимыми элементами являются 1и3. Рассмотрим сколько обратимых матриц с определителем равным 1: |A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=3. Возможные случаи:

1) a=1 Ù d=3,

2) a=3 Ù d=1,

bc=2. Возможные случаи:

1) b=1 Ù c=2,

2) b=2 Ù c=1,

3) b=2 Ù c=3,

4) b=3 Ù c=2.

Получили с данным условием 8 обратимых матриц.

2. ad=2. Возможно 4 случая (см. предыдущий пункт).

bc=1. Возможные случаи:

1) b=c=1,

2) b=c=3.

Получили с данным условием 8 обратимых матриц.

3. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

1) b=0 Ù c=1,

2) b=0 Ù c=2,

3) b=0 Ù c=3,

4) b=1 Ù c=0,

5) b=2 Ù c=0,

6) b=3 Ù c=0,

7) b=c=0,

8) b=c=2.

Получили сданным условием 16 обратимых матриц.

4. ad=0. Возможно 8 случаев (см. предыдущий пункт).

bc=3. Возможно 2 случая (см. первый пункт).

Получили с данным условием 16 обратимых матриц.

Таким образом, по данной классификации получаем 8+8+16+16+16=48 обратимых матриц, определитель которых равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 3, и число таких матриц будет также равно 48.

Следовательно, из 256 квадратных матриц второго порядка над Z4 обратимыми являются 96.

 

Обратимые матрицы над Z6 .

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Всего различных матриц второго порядка над Z6: 64=1296.

В Z 6 обратимыми элементами являются 1 и 5. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1:
|A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=5. Возможные случаи:

1) a=1 Ù d=5,

2) a=5 Ù d=1,

bc=4. Возможные случаи:

1) b=1 Ù c=4,

2) b=4 Ù c=1,

3) b=2 Ù c=5,

4) b=5 Ù c=2,

5) b=c=2,

6) b=c=4.

Получили с данным условием 12 обратимых матриц.

2. ad=4. Возможно 6 случаев (см. предыдущий пункт).

bc=3. Возможные случаи:

1) b=3 Ù c=1,

2) b=1 Ù c=3,

3) b=3 Ù c=5,

4) b=5 Ù c=3,

5) b=c=3.

Получили с данным условием 30 обратимых матриц.

3. ad=3. Возможно 5 случаев (см. предыдущий пункт).

bc=2. Возможные случаи:

1) b=2 Ù c=1,

2) b=1 Ù c=2,

3) b=2 Ù c=4,

4) b=4 Ù c=2,

5) b=4 Ù c=5,

6) b=5 Ù c=4.

Получили с данным условием 30 обратимых матриц.

4. ad=2. Возможно 6 случаев (см. предыдущий пункт).

bc=1. Возможные случаи:

1) b=c=1,

2) b=c=5.

Получили с данным условием 12 обратимых матриц.

5. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

1) b=0 Ù c=1,

2) b=0 Ù c=2,

3) b=0 Ù c=3,

4) b=0 Ù c=4,

5) b=0 Ù c=5,

6) b=1 Ù c=0,

7) b=2 Ù c=0,

8) b=3 Ù c=0,

9) b=4 Ù c=0,

10) b=5 Ù c=0,

11) b=2 Ù c=3,

12) b=3 Ù c=2,

13) b=3 Ù c=4,

14) b=4 Ù c=3,

15) b=c=0.

Получили с данным условием 30 обратимых матриц.

6. ad=0. Возможно 15 случаев (см. предыдущий пункт).

bc=5. Возможно 2 случая (см. первый пункт).

Получили с данным условием 30 обратимых матриц.

Таким образом по данной классификации получаем 12+30+30+12+30+30=144 обратимых матриц, определитель которых
равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 5, и число таких матриц будет также равно 144.

Следовательно, из 1296 квадратных матриц второго порядка над Z6 обратимыми являются 288.

Обратимые матрицы над Z8

* 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 3 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

Всего различных матриц второго порядка над Z8: 84=4096.

В Z 8 обратимыми элементами являются 1, 3, 5 и 7. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1
|A|=ad-bc=1.

Аналогично предыдущим пунктам будем придерживаться той же классификации:

1. ad=7. Возможно 4 случая.

bc=6. Возможно 8 случаев.

Получили с данным условием 32 обратимых матрицы.

2. ad=6. Возможно 8 случаев.

bc=5. Возможно 4 случая.

Получили с данным условием 32 обратимых матрицы.

3. ad=5. Возможно 4 случая.

bc=4. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

4. ad=4. Возможно 12 случаев.

bc=3. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

5. ad=3. Возможно 4 случая.

bc=2. Возможно 8 случаев.

Получили с данным условием 32 обратимых матрицы.

6. ad=2. Возможно 8 случаев.

bc=1. Возможно 4 случая.

Получили с данным условием 32 обратимых матрицы.

7. ad=1. Возможны 4 случая .

bc=0. Возможно 20 случаев.

Получили с данным условием 80 обратимых матриц.

8. ad=0. Возможно 20 случаев.

bc=7. Возможно 4 случая.

Получили с данным условием 80 обратимых матриц.

Таким образом, обратимых матриц, определитель которых
равен 1 —384.

Следовательно, из 4096 квадратных матриц второго порядка над Z8 обратимыми являются 1536.

Обратимые матрицы над Z9

* 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

Всего различных матриц второго порядка над Z9: 94=6561.

В Z 9 обратимыми элементами являются 1, 2, 4, 5, 7 и 8.

1. ad=8. Возможно 6 случаев.

bc=7. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

2. ad=7. Возможно 6 случаев.

bc=6. Возможно 12 случаев.

Получили с данным условием 72 обратимых матриц.

3. ad=6. Возможно 12 случаев.

bc=5. Возможно 6 случаев.

Получили с данным условием 72 обратимых матриц.

4. ad=5. Возможно 6 случаев.

bc=4. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

5. ad=4. Возможно 6 случаев.

bc=3. Возможно 12 случаев.

Получили с данным условием 72 обратимых матриц.

6. ad=3. Возможно 12 случаев.

bc=2. Возможно 6 случаев.

Получили с данным условием 72 обратимых матриц.

7. ad=2. Возможно 6 случаев.

bc=1. Возможно 6 случаев.

Получили с данным условием 36 обратимых матриц.

8. ad=1. Возможно 6 случаев.

bc=0. Возможно 21 случай.

Получили с данным условием 126 обратимых матриц.

9. ad=0. Возможно 21 случай.

bc=8. Возможно 6 случаев.

Получили с данным условием 126 обратимых матриц.

Таким образом, обратимых матриц, определитель которых равен 1 -648.

Следовательно, из 6561 квадратных матриц второго порядка над Z9 обратимыми являются 3888.

Обратимые матрицы над Z10

* 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Всего различных матриц второго порядка над Z10: 104=1000.

В Z 10 обратимыми элементами являются 1, 3, 7 и 9.

1. ad=9. Возможно 4 случая.

bc=8. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

2. ad=8. Возможно 12 случаев.

bc=7. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

3. ad=7. Возможно 4 случая.

bc=6. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

4. ad=6. Возможно 12 случаев.

bc=5. Возможно 9 случаев.

Получили с данным условием 108 обратимых матриц.

5. ad=5. Возможно 9 случаев.

bc=4. Возможно 12 случаев.

Получили с данным условием 108 обратимых матриц.

6. ad=4. Возможно 12 случаев.

bc=3. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

7. ad=3. Возможно 4 случая.

bc=2. Возможно 12 случаев.

Получили с данным условием 48 обратимых матриц.

8. ad=2. Возможно 12 случаев.

bc=1. Возможно 4 случая.

Получили с данным условием 48 обратимых матриц.

9. ad=1. Возможно 4 случая.

bc=0. Возможно 27 случаев.

Получили с данным условием 108 обратимых матриц.

10. ad=0. Возможно 27 случаев.

bc=9. Возможно 4 случая.

Получили с данным условием 108 обратимых матриц.

Таким образом, обратимых матриц, определитель которых
равен 1 —720.

Следовательно, из 10000 квадратных матриц второго порядка над Z10 обратимыми являются 2880.

 

Используя выше изложенный метод, было также вычислено количество обратимых матриц для колец вычетов по модулям:10, 12, 14, 15, 16, 18, 20, 21. В результате всех вычислений были получены следующие данные (ниже также использованы формулы полученные в §2):

Z n формула количество
2 (p-1)2p(p+1) 6
3 (p-1)2p(p+1) 48
4 - 96
5 (p-1)2p(p+1) 480
6 - 288
7 (p-1)2p(p+1) 2016
8 - 1536
9 - 3888
10 - 2880
11 (p-1)2p(p+1) 13200
12 - 4608
13 (p-1)2p(p+1) 26208
14 - 12096
15 - 23040
16 - 24576
17 (p-1)2p(p+1) 78336
18 - 23328
19 (p-1)2p(p+1) 123120
20 - 43520
21 - 96768

В итоге анализа полученных результатов эмпирическим путем была получена следующая формула для вычисления количества обратимых матриц второго порядка над кольцом вычетов по произвольному модулю.

Пусть Z n -кольцо вычетов по модулю n, причем n = p 1 k 1 p 2 k 2 … pmkm ,

Тогда количество обратимых матриц второго порядка равно:

 

(p1-1)2(p2-1)2…(pm-1)2p1p2…pm(p1+1)(p2+1)…(pm+1)(p14)k1-1(p24)k2-1…(pm4)km-1

 

 

Литература

 

1. Бухштаб А.А. Теория чисел. М.: Просвещение, 1966.

2. Куликов Л.Я. Алгебра и теория чисел. М.: Высшая школа, 1979.

3. Курош А. Г. Курс высшей алгебры. М.: Наука, 1975.

 



2019-12-29 180 Обсуждений (0)
Тогда количество таких матриц вычисляется по формуле 0.00 из 5.00 0 оценок









Обсуждение в статье: Тогда количество таких матриц вычисляется по формуле

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (180)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)